

Lecture Notes in Computer Science 3390
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Ricardo Choren Alessandro Garcia
Carlos Lucena Alexander Romanovsky (Eds.)

Software Engineering for
Multi-Agent Systems III

Research Issues
and Practical Applications

13

Volume Editors

Ricardo Choren
Military Institute of Engineering
Systems Engineering Department
Pça General Tibúrcio, 80 - Praia Vermelha, 22290-270 - Rio de Janeiro/RJ - Brazil
E-mail: choren@de9.ime.eb.br

Alessandro Garcia
Carlos Lucena
Pontifical Catholic University of Rio de Janeiro
Computer Science Department
Rua Marquês de São Vicente, 225 - Gávea, 22451-900, Rio de Janeiro/ RJ, Brazil
E-mail: {afgarcia, lucena}@inf.puc-rio.br

Alexander Romanovsky
University of Newcastle upon Tyne, School of Computing Science
Newcastle upon Tyne, NE1 7RU, UK
E-mail: alexander.romanovsky@ncl.ac.uk

Library of Congress Control Number: 2005921208

CR Subject Classification (1998): D.2, I.2.11, C.2.4, D.1.3, H.5.3

ISSN 0302-9743
ISBN 3-540-24843-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11392392 06/3142 5 4 3 2 1 0

Table of Contents

Agent Methodologies and Processes

From Object-Oriented to Agent-Oriented Software Engineering Methodologies . . 1
Brian Henderson-Sellers

MASUP: An Agent-Oriented Modeling Process for Information Systems 19
Ricardo Melo Bastos and Marcelo Blois Ribeiro

Composition of a New Process to Meet Agile Needs
Using Method Engineering . 36

Massimo Cossentino and Valeria Seidita

A Generative Approach for Multi-agent System Development 52
Uirá Kulesza, Alessandro Garcia, Carlos Lucena, and Paulo Alencar

Requirements Engineering and Software Architectures

A Social-Driven Design of e-Business System . 70
Manuel Kolp, T. Tung Do, and Stéphane Faulkner

Systematic Integration Between Requirements and Architecture 85
Lúcia R.D. Bastos and Jaelson F.B. Castro

Integrating Free-Flow Architectures with Role Models Based on Statecharts 104
Danny Weyns, Elke Steegmans, and Tom Holvoet

Aspectizing Multi-agent Systems: From Architecture to Implementation 121
Alessandro Garcia, Uirá Kulesza, and Carlos Lucena

Modeling Languages

CAMLE: A Caste-Centric Agent-Oriented Modelling Language
and Environment . 144

Lijun Shan and Hong Zhu

A Formal Approach for the Modelling and Verification of Multiagent Plans
Based on Model Checking and Petri Nets . 162

Hyggo Oliveira de Almeida, Leandro Dias da Silva, Angelo Perkusich,
and Evandro de Barros Costa

Specification of Role-Based Interactions Components in Multi-agent Systems . . . 180
Nabil Hameurlain and Christophe Sibertin-Blanc

XII Table of Contents

The ANote Modeling Language for Agent-Oriented Specification 198
Ricardo Choren and Carlos Lucena

Dependability and Coordination

A Software Framework for Automated Negotiation . 213
Claudio Bartolini, Chris Preist, and Nicholas R. Jennings

Efficient Agent Communication in Multi-agent Systems . 236
Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

Adaptive Access Control in Coordination-Based Mobile Agent Systems 254
Christine Julien, Jamie Payton, and Gruia-Catalin Roman

Separation of Concerns for Mechatronic Multi-agent Systems
Through Dynamic Communities . 272

Florian Klein and Holger Giese

Author Index . 291

brian@it.uts.edu.au

{bastos,blois}@inf.pucrs.br

−
−
−

−

−

−
−
−

−

−

−

−

−

−

−
−

−

−

−

−

−

5.

Composition of a New Process to Meet Agile Needs
Using Method Engineering

Massimo Cossentino and Valeria Seidita

Istituto di Calcolo e Reti ad Alte Prestazioni,
Consiglio Nazionale delle Ricerche Viale delle Scienze, 90128 Palermo, Italy

{cossentino,seidita}@pa.icar.cnr.it

Abstract. The need of developing a new software engineering process to allow
the quick prototyping of some robotic applications and meet the requests by some
companies for a development process that was shorter than PASSI, gave us the
opportunity of applying our studies on the assembling of a new SEP by reusing
parts (called method fragments) from other processes. In this paper we discuss
our approach that, starting from the method engineering paradigm, adapts and
extends it considering specific agent-oriented issues like the multi-agent system
meta-model. The final result of our experiment (Agile PASSI) is presented to-
gether with the requirements that motivated its structure.

1 Introduction

Many different design methodologies for multi-agent systems can already be found in
literature and nonetheless further works propose brand new approaches or the exten-
sions of existing ones. We think (but the opinion is largely shared in the scientific com-
munity) this happens because each methodology has been conceived to solve a specific
problem in a fixed context and this strongly limits the possibility of reusing it (without
significant changes) in a different situation. Several developers respond to their need
of designing a specific system in some productive context by creating a specific design
methodology; this implies a big effort and the cost of developing a MAS (multi-agent
system) becomes higher than the comparable object-oriented solution (it is worth to no-
tice that in the object-oriented context the Unified Process is an accepted standard and
designers does not need to add the design process construction cost to the development
effort).

A new branch of Software Engineering, called Method Engineering [1, 2] proposes
to create a new methodology starting from existing methodology parts, called method
fragments, that a method engineer defines and stores in the method base. When a
method engineering wants to design a new methodology, he extracts and assembles
the fragments (each one composed of some work to be done, the resulting artifacts and
supporting guideline) in order to obtain a methodology that is suitable for his specific
needs. Because of the great number of methodologies from which method fragments
can be extracted, it is necessary to represent them in a standard way and to have a def-
inition of the method fragments that could fit it. This work consists in a re-engineering
process [3] of existing methodologies to identify and extract fragments that could be

R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 36–51, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Composition of a New Process to Meet Agile Needs Using Method Engineering 37

used in the new methodology construction process. We think that in the AOSE (Agent-
Oriented Software Engineering) context, some confusion still exists among the use of
the terms process, methodology and method. In order to avoid misunderstandings, in
this work, from now on, we decided to refer to the (design) process (avoiding the use
of the word methodology) meaning with it the collection of phases, activities and steps
that produce the project deliverables. The term method will be used with the meaning of
a way of performing some kind of activity (at whatever level) within the design process
(this includes techniques, artifacts, and guidelines).

As a consequence of this adopted terminology, we will refer to the final result of the
method engineering activity as a new process or indifferently as SEP (Software Engi-
neering Process). It will be composed by a set of method fragments, each one of them
specifying which phase/activities or more generally work definitions should be carried
on and by which stakeholders. The most frequent aim of these work definitions is to
produce/refine one or more artifacts (text documents, diagrams, . . .) and in so doing
they often refer to some kind of style template (text documents) or modeling language
(diagrams). This process in order to be successfully applicable should be complemented
by some guidelines that will help the involved stakeholders in performing their duties
according to some defined best practices. The process will also prescribe in which se-
quence the phases and activities will be executed and if iterations should be done or
feedbacks provided to previous items; this often relates to some common models like
the waterfall [4] and evolutionary [5] (including iterative and incremental) ones.

Before proceeding to fragments assembling, we need to describe and represent these
parts in a standard way so to make easy the composition of parts coming from different
processes. The first step of this work consists in the creation of the meta-model that
will be used to describe the existing processes and the multi-agent system structure. An
important contribution to the solution of the first issue comes from an OMG specifica-
tion, the Software Process Engineering Metamodel [6]; this is the natural candidate to
become the adopted meta-model process, since it is already an accepted standard in the
OO context. We have exploited the possibilities offered by SPEM in the specific agent-
oriented context obtaining interesting results in the modular representation of PASSI
[7] and the method fragment extraction from it, using the standard definition of method
fragment [8]). In this paper we will present our approach to the reuse of these frag-
ments for assembling a new process (Agile PASSI) that satisfies our development needs
of specific robotic application.

The paper is organized as follow: in the next section we present an introduction to
the key topics of this work: method engineering and agile processes; in section 3 we
present our general approach to the new process composition and related method frag-
ments selection; in section 4 we quickly present the PASSI process from which we have
extracted the method fragments; in section 5 we report the results of our experiment,
and finally some conclusions are drawn in section 6.

2 Theoretical Background

In studying the solutions presented in this paper we considered a specific problem, the
rapid development of an agent-oriented application that needs a low level of quality
in the design and its documentation. This brought us to identify the need for an agile

38 Massimo Cossentino and Valeria Seidita

process that could be supported by some design tool. Taking profit of our previous
experience with the PASSI process [9], patterns reuse [10], and related design tools
[11], we conceived an agile version of PASSI by reusing some of its parts and building
up the new process. This corresponds to apply the method engineering approach that
will be discussed in subsection 2.1 to the composition of this process. All of these issues
will be discussed in the following sub-sections.

2.1 Agent-Oriented Method Engineering

In order to build our new design process we adopted (and extended) the method en-
gineering paradigm [12][13][14]. According to this approach, the new SEP (Software
Engineering Process) is built by assembling pieces of the process (method fragments)
[2][1][3] from a repository of methods. In this way we could obtain the best process for
our specific needs. We chose this approach because, in the last years, it proved success-
ful in developing many object-oriented applications, for example information systems
[15], and is now collecting a growing interest from the agent community[16][17].

Some differences exist between the approach we used in building Agile PASSI and
the cited approaches in the object-oriented context; the most relevant one is that the OO
context refers to the object concept and related model of the object oriented system,
while we refer to a MAS meta-model, that is a structural representation of the elements
(agent, role, behavior, ontology,. . .) that compose the actual system with their compos-
ing relationships. We built Agile PASSI by adopting the MAS meta-model represented
in Figure 2, that will be presented more in details in sub-section 3.1.

Figure 1 presents what we think to be the correct process for composing a new SEP
under the evolution of the method engineering paradigm that we call agent-oriented
method engineering. The process begins with the introduction in the method base of the
fragments extracted from available processes and the specifically created new ones; then
the designer (or better the method engineer), before building the new SEP, identifies
the elements composing the meta-model of the kind of MAS he wants to build. The
composition of the new SEP is performed under the assistance of some specific software
tool, called CAPE (Computer Aided Process Engineering) or CAME (Computer Aided
Method Engineering) depending on its process or method-oriented vocation. This tool
will allow the selection of the right method fragments from the method base and will
permit their introduction in the selected (or specifically designed) process model.

In this process, the definition of the MAS meta-model will help at both a logical and
practical level. Firstly this will be useful in the method fragment selection phase (avoid-
ing the selection of methods dealing with elements that are not present in the defined
MAS meta-model) and secondly, the same fact of clearly declaring the structure of the
system will allow the design tool to check for model coherence and to find not com-
pletely defined parts. Once the new SEP has been composed, the same CAPE/CAME
tool should permit the instantiation of a simpler tool (a CASE, Computer Aided Soft-
ware Engineering, tool) that will be used by the designer when designing a system to
solve some specific problem.

Agile PASSI has been constructed according to this process and in defining/compos-
ing our fragments we used a CAME tool (MetaEdit+ by Metacase) that offered a spe-
cific support for the composition of a process from existing fragments.

Composition of a New Process to Meet Agile Needs Using Method Engineering 39

Method
Base

Method
Fragments
 Extraction

New Process
Composition

System Design Specific
Problem

Deployment

MAS Meta-Model

New Method(s)

MAS Model

New Process

CAPE/CAME
Tool

Existing Processes

MAS running
on agent platforms

CASE Tool
Instantiation

Fig. 1. The adopted Agent-Oriented Method Engineering process.

2.2 Agile Processes

Classic SEP are well disciplined and heavily oriented to make a process predictable and
have a great stress on planning. As a reaction to this way of developing a software,in the
last years a new kind of processes, called lightweight in a first time but now known as
agile, has been developed. An important difference between the two kinds of processes
is the smaller quantity of documentation produced in the second case, in fact agile
ones are code-oriented, being source code the key element of documentation, and by
modeling with little increments and iterations they can easily face changes. In Agile
processes the consequence of an iterative development is to realize working subsystem
that have not (yet) all the functionalities of the final system, but when integrated and
tested, they will provide the requested features. We can say that agile processes (often
called agile methodologies) are not complete processes but they are a supplement to the
already existing ones, they begin where the other fault or better where the other needs
changes in order to perceive their objective. Reexamining PASSI we used principles
and techniques of agile processes [18] in order to create a lightweight SEP, simple,
easy to use and principally based on code production rather than on documentation
(that is still requested, but mostly when it can be automatically produced), besides we
considered the sequence of activities defined in one of the most used agile approaches,
Extreme Programming [19]: (i) Planning, (ii) Designing, (iii) Coding, and (iv) Testing;
this sequence will constitute the center of the proposed SEP.

3 The Proposed Approach

This section proposes our approach to the composition of a new process. In this spe-
cific work we will apply our ideas to the reuse of PASSI fragments in order to build

40 Massimo Cossentino and Valeria Seidita

a new process (Agile PASSI) accordingly to some requirements presented later. In our
research activity we decided to adopt existing standards whenever possible in order
to remain as close as possible to industrial needs in this direction; for this reason we
adopt: SPEM (Software Process Engineering Metamodel) by OMG [6] in modeling our
processes (and related fragments), UML (extending it when necessary) in modeling our
artifacts; FIPA [20] as the reference agent architecture and XML for data representation.

In creating a new process, we consider that this essentially is a design activity by
itself and as such it should be ruled by some kind of design process. The design process
we adopt (to design a new process) is composed of four phases: requirements analysis,
process model design, fragments selection, and fragments integration (it includes the
assembly and adjustment activities performed to adapt the fragments to the new pro-
cess). Further iterations in this sequence of phases should aim at process maturity as
described in the CMM [21] but these aspects are out of the scope of this paper.

The Requirements Analysis phase, consists of the identification of the important
features of the process under construction; for instance the need of an highly detailed
level of design that could derive from a defense contract project. Another example could
be the indisputable dependability requested to a mission critical system like an avionic
one. The Process Model Design consists of the selection of the process model (wa-
terfall [4], evolutionary or incremental [5], transformation [22], spiral [23], . . .), the
phases that constitute it and other process level requisite (for instance the conditions
that enable each new iteration). We consider situational requirements as the most useful
guidance for selecting the right process model. The need of rapidly facing changing
requirements could bring to the adoption of an evolutionary process while, conversely
the need of a very formal development process, with high quality level insurance could
lead to the adoption of some IEEE guidance [4][24] and therefore to the selection of
a waterfall model. The Fragments Selection phase aims at identifing the best frag-
ments for achieving the process goals (according to the requirements identified in the
first phase). Some authors (Ralyté et al. [2]) identify method fragments (called ’chunk’
in that work) using a process-driven very structured and completed heuristic. We think
that this top-down method, although very clear and well defined is not sufficient to meet
all the requirements (that are often expressed also in terms of deliverables and archi-
tecture of the system to be developed). For this reason we found useful to complement
a process driven selection activity with another data-driven one that considers aspects
like diagrams/other documents to be produced and the system architecture according
to some kind of MAS (multi-agent system) meta-model. From the process-driven point
of view, we consider four different levels of method fragment granularity according to
the position of the fragment in the process (in this classification we adopt the SPEM
terminology): Phase (highest level parts of the process, usually characterized by an en-
try condition, a goal and the sequential constraint, for instance System Requirements
and Agent Society in PASSI), Work Definition (a substantial part of the operations to be
performed in the process, it usually is composed of several lower level elements; for in-
stance Agent Identification, and Domain Ontology Description in PASSI, see section 4),
Activity (usually the smallest reusable part of a process, an activity is composed by the
tasks, operations, and actions that are performed by a role or with which the role may
assist, for instance Use Case Identification and Roles Dependencies Analysis in PASSI

Composition of a New Process to Meet Agile Needs Using Method Engineering 41

[7]), Step (the atomic elements that compose an activity, for instance the different steps
of the heuristic used for identifying agents from use cases in PASSI).

The selection of method fragments (that in our approach could be at the Phase, Work
Definition or Activity level of granularity) is performed working on two dimensions:
the process dimension and the system architecture dimension. The process dimension
enables a zooming on the analysis done during the process model design and considers
lower level features of the process. For instance at this stage we evaluate the need for a
specific attention on security (from which we will deduce the importance of introducing
some specific method fragment). Essentially in this phase we first select the phases we
want to introduce in the process (while some process models, like the waterfall one,
already prescribe these phases, some others leave a considerable level of degree in this
choice), and then we select the lower level fragments inside them. In so doing we follow
some criteria:

– Process completeness: all phases (and their activities) of the process are to be cov-
ered by appropriate method fragments;

– Process coherence: generally speaking, each fragment refers to some kind of ‘philo-
sophical’ or ‘methodological’ approach to the solution of the problem it faces. It
makes no sense to introduce fragments belonging to contrasting approaches in the
same process;

– Process applicability: the selected fragments should compose a process that is re-
alistic (not too complex or simplistic for the faced problem) and lead to the final
solution in an optimal (or at least acceptable) way (in terms of cost and time);

– Contracts accomplishing: each fragment has some specific preconditions that should
be enacted by previous parts of the process and when it has been applied, it gener-
ates some postconditions that could trigger the following fragments;

– Stakeholders adequacy: it consists in selecting a set of fragments where the skills
required for involved roles (analyst, architect, programmer, ...) are adequate to the
situation (company, developing team, . . .) where the process will be applied;

– Stakeholders satisfaction: people involved in the process application play a decisive
role in the success of the project. Their expectancy in terms of the kind of work they
will participate, is an important factor for the selection of fragments.

– Specific requirements: they could help in the selection of some fragments. For in-
stance the need of designing a real-time system will induce to consider fragments
that deal with time-related aspects of the design.

In the system architecture dimension we define the MAS meta-model and from it we
deduce the need for specific fragments that with their resulting artifacts could contribute
to the definition of a system obeying to the defined meta-model. We now deduce the
models and views that are necessary to define and refine the elements of the system
(this in someway resembles the product perspective of Brinkkemper et al. in [3]).

During the Fragments Integration phase, the selected fragments are disposed in
the right position inside the process and when necessary they are adapted to the new
context. Method fragment contracts (preconditions required by each fragment and post-
conditions enacted by it) are used to verify the possibility of directly connecting some
fragments. An interesting approach to the adaptation of fragments is described in [25].

42 Massimo Cossentino and Valeria Seidita

-Name : String
-Knowledge : Ontology

Agent
-name : String

Task

Ontology

Concept

-Act

Action Predicate

-Name
-Exchanged Knowledge : Ontology
-Content Language

Communication

-Name : String

Agent Interaction Protocol

-Comm_act : Performative

Message

1

*

Implementation Task

1

1

Implementation Agent

1
1

1

1..*

Requirement

1..*

1

Non Funct. Req.

0..*

1..*

1 *

1 *

Fig. 2. The Agile PASSI MAS meta-model.

3.1 The Agile PASSI Process Composition Experiment

The reported experiment started from two different motivations, the first was that we
needed a short design process to let designers focus on the implementation of relatively
small robotic applications; the second motivation was that during the development of
large projects some of ours industrial partners underlined the benefit that could come
from the availability of a versatile process that could substitute PASSI in the develop-
ment of minor parts of the whole project. Because of space concerns, in the following
we will only refer to the first motivation but the other has been considered too during
the Agile PASSI construction and the resulting process proved good in the developing
of non robotics applications too. Our robotic systems are deployed on mobile robots
moving at a relatively low speed (only a few meters per second) and usually performing
missions related to the use of cognitive capabilities (for example we designed systems
for museum guide, surveillance and environment discovery applications). We now want
to design a process that, taking profit of the successful experience already done with
PASSI, could be the best solution for this kind of problems in our laboratory context.

The requirements that we could identify for our new process are centered on the
main goal of not distracting developers from their main objective of implementing/
tuning some kind of new algorithm with a long design process; nevertheless, we do
still need to maintain a reasonable quality of design documentation for enabling the
transferred knowledge among people in our laboratory. Another wish is related to the
possibility of quickly reusing contributions coming from other projects in order to re-
strict the effort related to the development of a new application to the solution of its
novelty aspects. For instance, in a robotic application great parts of already existing
systems can be reused both from the algorithmic (general navigation solutions like path
planning and obstacle avoidance) and structural (communications, resource sharing and

Composition of a New Process to Meet Agile Needs Using Method Engineering 43

data caching) points of view. As regards the response time of the developed systems,
our real-time constraints are not very tight (as already said, ground robots move rela-
tively slow) but nonetheless the possibility of explicitly designing concurrent actions
and time relationships among them is highly desirable in order to optimize the perfor-
mance of a system that because of the use of low efficiency agent platforms (Java-based)
could otherwise bring to an unacceptable decay in performance if no specific attention
is given to this problem. We think that all of these issues could be satisfied by using
an agile process that supports a light (manual) design phase while encourages the reuse
of existing contributions in form of patterns and (automatically) produces a consistent
documentation at different level of abstractions.

As regards the other dimension we consider in our composition approach (the sys-
tem architecture), the requirements of the new process regard our decision of signifi-
cantly reducing the dimension of the conventional PASSI MAS meta-model [26] be-
cause of the direct relationship that exists between the number of elements of the meta-
model and the design artifacts (and activities). The chosen MAS meta-model is reported
in Figure 2, it is composed of four different categories of elements: requirements (func-
tional and non functional requirements), domain ontology (concept, predicate, action),
agent logical (abstract) structure (agent, task, communication, message, agent interac-
tion protocol), and agent implementation structure (implementation agent and imple-
mentation task).

In this meta-model, the concept of agent represents the entity performing the sys-
tem functionalities. Each functionality descends from one or more requirements elicited
during meetings with clients, users, developers and designers and then represented in a
conventional use case diagram. Agent knowledge is described in terms of instances of
the domain ontology, that is a composition of concepts (entities and categories of the
domain), predicates (assertions about elements of domain) and actions (that agents can
perform in the domain, so affecting the status of concepts). In Agile PASSI we think to
an agent as composed of tasks representing a portion of its behavior and embodying its
capabilities of pursuing a specific goal. An agent uses communications to realize its so-
cial relationships and asking for collaborations from other agents. Each communication
is composed of messages expressed in an encoding language and refers to an element
of the ontology, besides the flow of messages is ruled by an interaction protocol (AIP)

From all of these requirements we deducted some choices for our new process:

– We decided to adopt an agile process. This introduces a specific structure of pro-
cess model: (a) it should be short (composed of only a few phases), iterative, and
incremental (as a consequence we need some iteration planning activities) and (b)
a specific attention is devoted to coding and testing in order to have a frequent de-
livery of functional portions of the final system; this solves the developer ’anxiety’
of focusing on algorithm implementation rather than system design.

– The process should be composed of a quick design phase and should encourage the
reuse of portions of existing design artifacts and applications in form of patterns; it
should enable the automatic production of a consistent documentation at different
levels of abstraction by re-engineering the produced code.

– The design aspects we decided to maintain from conventional PASSI are related to
the initial part of the process (use case based requirements analysis) and the agent

44 Massimo Cossentino and Valeria Seidita

Requirements Agent Society Coding Testing

[New complete iteration]

[Refactoring iteration]

Test Plan

Fig. 3. The phases of the Agile PASSI process.

society model (functionality-based agents identification and a detailed domain on-
tology design). This satisfies the expectancy of already skilled PASSI designers that
do not want to study a totally new process.

– Finally, the process has to be supported by a specifically conceived design tool in
order to limit all the operations that are performed ‘by hand’ (this also includes
design documentation production) because they contribute in significantly slowing
down the process and could introduce mistakes in the final result.

The resulting process is reported in Figure 3 and it is composed of five different
phases: (i) Requirements where the new iteration is planned (in terms of risks and re-
quirements to be faced) and a use case based analysis of system requisites is performed;
(ii) Agent Society where the agents that will constitute the system are identified and the
domain application ontology defined; (iii) Test Plan where starting from requirements,
a detailed plan of the test that will be applied to the code is prepared; (iv) Coding where
code is produced (with patterns reuse); and (v) Testing where the produced portion of
the system is tested accordingly to the previously prepared test plan.

4 PASSI Description

PASSI [9] is a process for multi agent systems development that covers all the design
activities from the requirements analysis to the system implementation and deployment.
The design work is carried out adopting five phases composed by twelve sequential and
iterative work definitions used to produce the MAS specification.

The phases and work definitions of PASSI (in Figure 4 a SPEM diagram represent-
ing them) are:

1. System Requirements. It is composed of four different work definitions and pro-
duces a description of the functionalities required for the system and an initial de-
composition of them accordingly to the agent paradigm. The four work definitions
are: (i) the Domain (Requirements) Description, where the system is described in
terms of functionalities; (ii) the Agent Identification where agents are introduced
and the already identified requirements assigned to them; (iii) the Role Identifica-
tion where agents’ interactions are described using traditional scenarios; (iv) the
Task Specification where the operational plan of each agent is draft.

2. Agent Society. It composes a model of the social interactions and dependencies
among the agents of the solution. It is composed of four work definitions: in the
Domain Ontology Description the elements occurring in the system domain are rep-
resented in terms of concepts, predicates, actions and relationships among them; in

Composition of a New Process to Meet Agile Needs Using Method Engineering 45

the Communication Ontology Description the focus is on agent’s communications
that are explained in terms of referred ontology, content language and agent in-
teraction protocol; in the Role Description distinct roles played by agents in the
society and the involved tasks/behaviors are detailed; in the Protocol Definition
non-standard agent interaction protocols are defined.

3. Agent Implementation. It is a model of the solution architecture in terms of re-
quired classes and methods. It is composed of four work definitions organized in
two streams of activities (structure definition and behavior description) both per-
formed at the single-agent and multi-agent levels of abstraction.

4. Code. It is a model of the solution at the code level. It is largely supported by
patterns reuse and automatic code generation.

5. Deployment. It is a model of the distribution of the parts of the system across hard-
ware processing units. The Deployment Configuration work definition, describes
the allocation of agents in the units and any constraint on migration and mobility.

Testing in PASSI is divided in two different stages: the Agent Test where each single
agent is tested after its implementation (Code phase) and the Society Test where the
whole multi-agent system is tested (after the Deployment phase).

This great number of steps may take a long time to obtain the first prototype code.
Also, the process is iterative both among the phases and in the whole life cycle; this
configures PASSI as a traditional process in which the coding phase is positioned some-
how late in the process and like many other classical approaches it is oriented to high
level documentation production, and it is more adequate for projects with a low level of
changes in requirements.

From PASSI we extracted several fragments some of which will be reused or adapted
for the creation of the Agile PASSI process. In the following subsection we will describe
the PASSI method fragments extraction process.

4.1 PASSI Fragments

Before performing the fragments extraction from PASSI, we re-engineered it in order
to represent all the process aspects (activities, artifacts, constraints and conditions) in
a way that could enable the method fragments identification. SPEM (Software Process
Engineering Metamodel [6]) was adopted as a process meta-modeling language; this
language allows an intuitive description of the software development process and its
components and includes an UML profile that can be used to graphically represent the
process using UML activity, class and use case diagrams. The core of SPEM is in its
conceptual model: a software development process can be seen as a collaboration be-
tween abstract active entities called Process Roles that perform some operations called
Activities on concrete entities called Work Products.

We represented the PASSI process in SPEM using two sequential steps, in the first
we considered the whole process with the involved disciplines, in the second we detailed
the separate phases and work definitions, following the conceptual model described
above and the method fragment structure already defined in section 3. Starting from
the procedural representation of PASSI composed of five phases (Figure 4), we decided
to extract one different fragment for each one of the PASSI work definitions (refer

46 Massimo Cossentino and Valeria Seidita

System Requirements

Agent Society Agent Implementation Code

Deployment

Syst.

Req.
Model

Agent

Impl.
Model

Code

Model

Agent

Society
Model

Deploy

ment
Model

Fig. 4. The phases of the PASSI process.

to the beginning of this section for their list). In so doing we obtained a substantial
simplification of our new process creation work: the assembly process will only deal
with two levels of fragments (phase and work definitions); another consequence is that
their modifications during fragments integration will be easier since it will mainly deal
with work definition level fragments (and rarely with their composing activities).

At the end of our PASSI re-engineering and fragments extraction work we obtained
seventeen work definition level fragments and five phase level ones; they constitute the
fragments repository from which we selected the elements to compose the Agile PASSI
process

5 The Resulting Agile PASSI Process

Starting for the considerations proposed in the previous sections we selected from the
PASSI process some fragments that we consider in line with the new process require-
ments (see subsection 3.1) and our ‘philosophy’ in agents development (use case based
agents identification and central role of ontology); the selected method fragments: Do-
main Requirements Description (a description of the system requirements in terms of
use cases), Agent Identification (the clustering of system functionalities into packages
associated to agents), Domain Ontology Description (an ontological description of the
solution domain in terms of concepts, predicates and actions), Code reuse (a compre-
hensive pattern reuse technique that allows the automatic production of code) and Test-

Composition of a New Process to Meet Agile Needs Using Method Engineering 47

Planning

Requirements Code TestingAgent Society

MABD

SASD

MASD

Iteration
Plan

Sub Domain
Requirements Description

SDR

Domain
Ontology

Description

Agent
Identification

DOD

AID

Test Plan

Test Plan

Test
Plan

Test
Results

Coding

Code

Testing

Pattern
Reuse

[New complete iteration]

[Refactoring iteration]

COD

Text
Document

KEYS
UML

Diagram
Work

Definition

Fig. 5. The Agile PASSI process.

ing (of agents and societies). The new Agile Process (reported in Figure 5 in form of
a SPEM activity diagram), resulting from the composition of these work definitions
in the five phases of the general model proposed in Figure 3, is composed of eight
work definitions (Planning, Sub-Domain Requirements Description, Domain Ontology
Description, Agent Identification, Pattern Reuse, Coding, Test Plan, Test) and eleven
artifacts (seven UML diagrams and four text documents).

More in details, the first phase (Requirements) consists in an high level analysis of
the system under construction through two sequential work definitions:

– Planning, where through the communication among team elements and sequential
iterations the problem is divided into sub-problems so to make possible a correct
risks management and activities scheduling. This first activity should result in a
text document (Iteration Plan) summarizing the considerations and the solution
proposed by team elements.

– Sub Domain Requirements Description, a functional description of the system
through common UML use case diagrams. This work definition corresponds to the
PASSI Domain requirements Description, the ‘Sub Domain’ prefix has been added
to stress the incremental concepts that are behind this process.

In the Agent Society phase, developer identifies the agents involved in the solution
(assigning the previously identified functionalities to them), and then he defines the
ontology of the domain. The phase is composed of two parts:

– Agent Identification, in this activity another use case diagram is composed, starting
from the previously produced one, clustering use cases in packages that represent
the functionalities assigned to agents; in this way, each agent will be responsible
for the satisfaction of some requisites.

– Domain Ontology Description, the domain is expressed in terms of its ontology
through a class diagram where classes represent concepts, predicates and actions.

48 Massimo Cossentino and Valeria Seidita

We expect that this two work definitions are iteratively carried on ; after the iden-
tification of an agent, the definition of its knowledge and actions starts and this could
bring to some changes in the list of functionalities assigned to it.

Testing is a continuous activity during an agile development process, in Agile PASSI
it is divided in two phases; the first is Test Plan, that has been conceived referring
to the agile processes principles and particularly to eXtreme Programming [19] rules;
according to these rules the testing phase starts before the coding activity, the de-
signer/programmer has to first prepare the test plans and then coding the component
that must satisfy them (this will be proved during the following Testing phase).

The Code phase is composed of two strictly coupled parts.

– Patterns reuse, where we try to reuse portions of precedent projects through the
reuse of patterns of services (interactions among agents), agents, tasks and actions.
In this activity the Agent Factory tool proves very useful allowing us the automatic
generation of relevant portions of code and a reduction of development time and
costs.

– Coding, consists in the introduction of the code that cannot be derived from patterns
(for instance problem specific algorithms).

Coding phase is the core of Agile PASSI and it is largely supported by a tool, APTK
(Agile PASSI Toolkit), that is an add-in of a commercial design tool (Metaedit+). APTK
offers several features to the designer, its main functionalities are:

– Automatic compilation of diagrams - this allows the partial drawing of some dia-
grams, for instance the Agent Identification diagram is initially drawn reporting the
use cases of the previous work definition, and the complete design of some others
starting from the code re-engineering and other design information (like applied
patterns), for instance the Communication Ontology diagram is composed in this
way.

– Support of changes - our tool, interacting with the Metaedit+ functionalities, allows
the user to modify all the design models (even those automatically generated by the
tool), and to profitably perform an incremental and iterative development of the
project.

– Consistency check - the developer can perform a check on all the generated mod-
els to verify their consistency or he can use the MetaEdit+ checking feature for
verifying the correctness and consistency of each single diagram.

– Report and project documentation generation - APTK allows the creation of MS
Word or HTML documents representing all the design aspects.

– Patterns reuse - the user interacts with Agent Factory, that is totally integrated with
APTK, to apply patterns to the system and generate their code.

– Automatic code generation and reverse engineering - Code generation and reverse
engineering are entirely done by the Agent Factory application, through its integra-
tion in APTK.

Testing, after code completion, is the phase where the real test accordingly to the
previously defined test plans is performed.

Composition of a New Process to Meet Agile Needs Using Method Engineering 49

Agile PASSI has been created starting from conventional PASSI with the precise
aim of having a lighter design process that could fit the needs arising from the devel-
opment of small-medium size projects. As a consequence there are not fundamental
differences between the two processes with the exception of those that we can indi-
viduate between a classic SEP and an agile one. Even one of the most agent-oriented
aspects of a design process (the MAS meta-model) is not very different. In building Ag-
ile PASSI we referred to the MAS meta-model represented in Figure 2 whose elements
are a subset of the conventional PASSI MAS meta-model [26].

Being our process agile, it is iterative, composed by a low number of steps and it
strongly involves the end-user (or customer) during the development phases. These are
choices we did in order to be compliant with the agile manifest principles[18], and as
a consequence some of the phases of traditional SEPs are not considered (this is the
case of the system architecture design that is left to the agent society organization) or
performed very quickly. Quality assurance is enhanced by the large reuse of patterns, the
automatic production of relevant portions of code and the consistency check performed
by the tool on the design artifacts.

6 Conclusions and Future Works

This work started from the need of developing a new software engineering process
(SEP) that could allow the quick prototyping of agent-oriented applications. In pre-
vious experiences we used the PASSI process that proved good for the development
of medium-large size applications but it was too time consuming for the development
of smaller size applications. This gave us the opportunity of applying our studies on
the assembling of a new SEP by reusing parts (called method fragments) from other
processes. This approach, already known as method engineering in the object-oriented
context, is now diffusing in the agent-oriented community as a logical attempt of ratio-
nalizing and reusing the great number of development processes proposed in literature.

In this paper we discuss our approach that is composed of four phases: Require-
ments Analysis, Process Model Design, Fragments Selection, Fragments Integration. In
these phases we also consider specific agency peculiarities like the MAS meta-model
that differently from what happens in the object-oriented context is not a-priori known
and fixed, but it is one of the most important differences that can be found in the de-
velopment processes proposed in literature. The result of this work (the Agile PASSI
process) is finally presented starting from the requirements that motivated its structure.

In the future we aim at further detailing the different aspects of our work, by for-
malizing a sufficient number of techniques and guidelines that could efficiently support
the method engineer. As regards the Agile PASSI process, after having applied it in a
couple of small projects, we can say that it fully achieved the goals we were pursuing
from the methodological point of view, while the design tool (APTK) has still to be
significantly improved in order to reach the flexibility and extensive support offered by
the conventional PASSI support tool (PTK).

50 Massimo Cossentino and Valeria Seidita

References

1. Brinkkemper, S., Lyytinen, K., Welke, R.: Method engineering: Principles of method con-
struction and tool support. International Federational for Information Processing 65 65
(1996) 336

2. Ralyte, J., Rolland, C.: An approach for method reengineering. Lecture Notes in Computer
Science (2001) 27–30

3. Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-modelling based assembly techniques for
situational method engineering. Information Systems 24 (1999)

4. Board, I.S.: Ieee std 1074-1997, standard for developing software life cycle processes (1997)
5. Gilb, T.: Principles of Software Engineering Management. Addison-Wesley Reading (1988)
6. OMG: Software Process Engineering Metamodel Specification. http://www.omg.org (2002)
7. Cossentino, M., Sabatucci, L., Seidita, V.: Spem description of the passi process. Technical

Report 20-03, ICAR-CNR (2003) Available online at http://www.pa.icar.cnr.it/ cossentino/
FIPAmeth/metamodel.htm.

8. Foundation for Intelligent Physical Agents: Method Fragment Definition. (2003)
9. Cossentino, M., Sabatucci, L.: Agent system implementation. In Paolucci, M., Sacile, R.,

eds.: Agent-Based Manufacturing and Control Systems: New Agile Manufacturing Solutions
for Achieving Peak Performance, CRC Press (2004)

10. Cossentino, M., Sabatucci, L., Chella, A.: A possible approach to the development of robotic
multi-agent systems. In: IEEE/WIC IAT’03 Conference, Halifax - Canada (2003)

11. M.Cossentino, L.Sabatucci, S.Sorace, A.Chella: Pattern reuse in the passi methodology. In:
ESAW’03, Imperial College London, UK (EU) (2003)

12. Brinkkemper, S.: Method engineering: engineering the information systems development
methods and tools. Information and Software Technology 37 (1995)

13. Kumar, K., Welke, R.: Methodology engineering: a proposal for situation-specific method-
ology construction. Challenges and Strategies for Research in Systems Development (1992)
257–269

14. Saeki, M.: Software specification & design methods and method engineering. International
Journal of Software Engineering and Knowledge Engineering (1994)

15. Tolvanen, J.P.: Incremental method engineering with modeling tools: Theoretical principles
and empirical evidence (ph.d. thesis). Jyväskylä Studies in Computer Science (1998) 301

16. Henderson-Sellers, B., Debenham, J.: Towards open methodological support for agent-
oriented systems development. In Far, B., Rochefort, S., Moussavi, M., eds.: Proceedings
of the First International Conference on Agent-Based Technologies and Systems, University
of Calgary, Canada (2003) 14–24

17. Juan, T., Sterling, L., Winikoff, M.: Assembling agent oriented software engineering method-
ologies from features. In: Third International Workshop on Agent-Oriented Software Engi-
neering, Bologna - Italy (2002)

18. Beck, K., al.M. Beedle, van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R., Mellor, S.,
Schwaber, K., Sutherland, J., Thomas, D.: (Agile manifesto) http://www.agilemanifesto.org.

19. Wells, D.: (Extreme programming - a gentle introduction) http://www. extremeprogram-
ming.org.

20. O’Brien, P., Nicol, R.: Fipa - towards a standard for software agents. BT Technology Journal
16 (1998) 51–59

21. Paulk, M., Weber, C., Curtis, B.: The Capability Maturity Model for Software. Addison
Wesley (1995)

22. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of Software Engineering. Prentice
Hall International (1991)

Composition of a New Process to Meet Agile Needs Using Method Engineering 51

23. Boehm, B.: A spiral model of software development and enhancement. IEEE Computer 21
(1988) 61–72

24. Board, I.S.: Software life cycle processes (1998)
25. Ralyte, J., Rolland, C.: An assembly process model for method engineering. In: Proceedings

of the 13th Conference on Advanced Information Systems Engineering, CAISE’01, Inter-
laken (Switzerland) (2001)

26. Bernon, C., Cossentino, M., Gleizes, M., Turci, P., Zambonelli, F.: A study of some multi-
agent meta-models. In: Agent-Oriented Software Engineering Workshop (AOSE’04), New
York (USA) (2004)

{uira,afgarcia,lucena}@inf.puc-rio.br

palencar@csg.uwaterloo.ca

•

•
•
•

•

•

•

•

•

•
•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

IKnowledgeUp-

dating IServices

IMessageReception

IMessageSending

IBeliefAdaptation

IMessageReception

IPlanAdapta-

tion IKnowledgeUpdating

IExtrinsicKnowledge

IRoleBinding

Agent

Belief Goal Plan

Agent

Agent

Interaction

Interaction

Interaction

Interaction

Adaptation

Agent Adapta-

tion receiveMsg() Agent

Interaction

Adaptation setGoal()

Agent execute()

Plan

Adaptation

Autonomy Agent

Autonomy

Autonomy receiveMsg() Agent

Autonomy

Agent

makeDecision() Autonomy

Autonomy

Agent

Plan

Goal

Goal Autonomy

Interaction Adaptation

Autonomy

•

•

ResearchUserAgent

Chair Reviewer

ResearchUserAgent

Plan Goal

ResearcherUserAgent

Chair Reviewer

Interaction Adaptation Autonomy

ChairInteraction ChairAdaptation ChairAutonomy

ChairInteraction

ChairAdapta-

tion Chair-

Autonomy

{kolp,do,faulkner}@isys.ucl.ac.be

−

−

−

−

−

Service
Non−operational

Strategic
Management

Middle

Operational
Core

Apex
Strategic

Techno
structure

Planning
Line

Support

Procedure
Information

Coordination

Logistics

disation
Standar

disation
Standar

Policy
Management

Management

Management
Behavior

Operational

Operate

−

−

−

−

−

−

−

−
−
−

−

Maker
Decision

Statistical
Processor

Billing
Coordinator Information Back Store

Store FrontOrders

Billing

Management
Security Strategic

Information
Financial

Transaction

Coordinate
E−Shopping Catalogue

Information
Product

Handle
Orders &
Billing

Adaptability
Management

Decision

Authority &
Strategic

Update &
Back−up

Information

Browsing

Manage

cus-
tomer1 ServiceRequestSent

BRRefusalSent BRAcceptance-
Sent

CallForProposalSent

InformFailureServiceRe-
questSent ServiceForwarded

Client

request

forward
service

service

Broker
Provider
Service

provide
service

accept service
proposed

service
propose

service
unsubscribe

service
subscribe

(a)

(b)

Customer1/
Client:BR

bk1/
Broker:BR ServiceProvider:BR

sp1/

Subscribe/ Unsubscribe

AcceptedSubscriptionSent

RefusedSubscriptionSent

BRRefusalSent

CallForProposalSent

RefusalSent

ProposalSent

RejectedProposalSent

AcceptedProposalSent

FailureServiceSent
InformFailure

InformDoneServiceSent

SB

pattern

CFP
pattern

rServiceForwarded

ServiceRequestSent

ServiceRequestSent

BRAcceptanceSent

Advertise
Source

Location
Profile

Customer

Route Info
Request

Mediator

Source
Matchm.

Fwd Source
Change

Broker
Info

Cancelation
Handle

Request

Shopping
Cart

Provide
Item
Data

Locate
Source

Query
Information

Source

Info
Ask for

Advertising

Monitor

Translate
Response

Provide
Information

Wrapper Product
Database

Update
Notify

3.�
��

luciabastos@bb.com.br

jbc@cin.ufpe.br

•

•

•

•

•

•

•

•

•

•

•

•

PIPES &
FILTERS

LAYERS S-IN-5 JOINT
VENTURE

•

•

•

•

•

•

Integrating Free-Flow Architectures
with Role Models Based on Statecharts

Danny Weyns, Elke Steegmans, and Tom Holvoet

AgentWise, DistriNet
Department of Computer Science K.U.Leuven

Celestijnenlaan 200 A
B-3001 Leuven, Belgium

{Danny.Weyns,Elke.Steegmans,Tom.Holvoet}@cs.kuleuven.ac.be

Abstract. Engineering non-trivial open multi-agent systems is a chal-
lenging task. Our research focusses on situated multi-agent systems,
i.e. systems in which agents are explicitly placed in a context – an en-
vironment – which agents can perceive and in which they can act. Two
concerns are essential in developing such open systems. First, the agents
must be adaptive in order to exhibit suitable behavior in changing cir-
cumstances of the system: new agents may join the system, others may
leave, the environment may change, e.g. its topology or its character-
istics such as throughput and visibility. A well-known family of agent
architectures for adaptive behavior are free-flow architectures. However,
building a free-flow architecture based on an analysis of the problem do-
main is a quasi-impossible job for non-trivial agents. Second, multi-agent
systems developers as software engineers require suitable abstractions for
describing and structuring agent behavior. The abstraction of a role ob-
viously is essential in this respect. Earlier, we proposed statecharts as a
formalism to describe roles. Although this allows application developers
to describe roles comfortably, the formalism supports rigid behavior only,
and hampers adaptive behavior in changing environments.
In this paper we describe how a synergy can be reached between free-
flow architectures and statechart models in order to combine the best
of both worlds: adaptivity and suitable abstractions. We illustrate the
result through a case study on controlling a collection of automated
guided vehicles (AGVs), which is the subject of an industrial project.

1 Introduction

Dealing with the increasing complexity of developing, integrating and managing
open distributed applications is a continuous challenge for software engineers.
In the last fifteen years, multi-agent systems have been put forward as a key
paradigm to tackle the complexity of open distributed applications. In this paper
we focus on situated multi-agent systems1(situated MASs) as a generic approach

1 Alternative descriptions are behavior-based agents [4], adaptive autonomous agents
[22] or hysteretic agents [16][14].

R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 104–120, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Integrating Free-Flow Architectures with Role Models Based on Statecharts 105

to develop self-managing open distributed applications. In particular, we propose
an approach that combines aspects of adaptive agent architectures with ideas
of rigid modeling of agent behavior for developing these kinds of multi-agent
systems.

In situated MASs, agents and the environment constitute complementary
parts of a multi-agent world which can mutually affect each other [33]. Situated-
ness places an agent in a context in which it is able to perceive its environment
and in which it can (inter)act. Intelligence in a situated MAS originates from the
interactions of the agents in their environment rather than from the capabilities
of the individual agents. While interacting, agents form an organization in which
they all play and execute their own role(s) in that organization.

The approach of situated MASs has a long history. R. Brooks [4][5] identified
the key ideas of situatedness, embodiment and emergence of intelligence. L. Steels
[31] and J. L. Deneubourg [11] introduced the basic mechanisms for agents to
coordinate through the environment: gradient fields and marks. P. Maes [22]
adopted the early robot-oriented principles of reactivity in a broader context of
software MASs. J. Ferber and A. Drogoul [13], M. Dorigo [12], V. Parunak [27]
and many other researchers drew inspiration from social insects and adopted the
principles in situated MASs. Where the approach of situated MASs started from
the rejection of classical agency based on symbolic AI, nowadays the original op-
position tends to evolve towards convergence with different schools emphasizing
different aspects. The researchers, although having different points of view, are
very complementary, and each have their own applications.

Situated MASs have been applied with success in numerous practical applica-
tions over a broad range of domains, e.g. manufacturing scheduling [28], network
support [3] or peer-to-peer systems [1]. The benefits of situated MASs are well
known, the most striking being flexibility, robustness and efficiency.

During the last two years, we developed an agent architecture that enables
advanced adaptive agent behavior. The architecture is a hierarchical free-flow
architecture which integrates the concept of situated commitments. Situated
commitments allow an agent to bias action selection towards actions in its com-
mitments.

Besides the theoretical work on agent architectures, we have been confronted
with application engineers who require software engineering support for develop-
ing concrete, real-world MASs, the applications include active networking, man-
ufacturing control and supply chain networks. These software engineers require
simple and comfortable modeling languages for functionally describing agent
behavior. A modeling language based on statecharts resolved this requirement.
However, a statechart specification of agent behavior is typically a static, rigid
model in that it leaves little room for adaptive and explorative behavior. As a
result, the agents in the applications performed behavior that was sometimes
unable to adapt to different environmental situations.

Free-flow architectures allow adaptive behavior, yet it is unrealistic to assume
that software engineers – starting from the analysis of the problem domain –
build a complex free-flow architecture for complex applications, where agents

106 Danny Weyns, Elke Steegmans, and Tom Holvoet

can perform many actions. For such applications, the architecture quickly be-
comes unmanageable. We aim to combine the best of both worlds, i.e. the best
of adaptive architectures and simple modeling languages. To that end, we re-
tain a flexible action selection mechanism, but complement its description with
statecharts. Here, we refrain from considering a statechart description of agent
behavior as a kind of sequence chart, but rather use statecharts to describe role
composition and to structure related actions within roles only.

This paper is structured as follows. In section 2 we introduce free-flow ar-
chitectures and give an overview of the statechart formalism we have developed.
We discuss problems we encountered when applying them in practice. Section 3,
the core of the paper, describes the combined adoption of free-flow architectures
and the statechart modeling language. We illustrate our explanation with an
example application. Section 4 discusses how the software engineering approach
proposed in this paper relates to existing agent-oriented methodologies. Finally,
in section 5 we conclude the paper.

2 Free-Flow Architectures and Statechart Models

In this section we start with a brief introduction of free-flow architectures. Then
we give a short overview of the statechart formalism we have developed for
modeling agent behavior. For both, we point out a number of problems we en-
countered when applying them in practice. Subsequently we outline an approach
to combine free-flow architectures with statechart models.

2.1 Free-Flow Architecture for Adaptive Behavior

Open MASs are characterized by dynamism and change: new agents may join the
system, others may leave, the environment may change, e.g. its topology or its
characteristics such as throughput and visibility. To cope with such dynamism
the agents must be able to adapt their behavior according to the changing cir-
cumstances. A well-known family of agent architectures for adaptive behavior
are free-flow architectures.

Before we introduce free-flow architectures, we first clarify our perspective
on adaptability in this paper. Here we look at adaptability as an agent’s ability
to deal with different kinds of situations in its environment in a flexible way. We
do not look at adaptability in the sense of learning, i.e. as an agent’s ability to
adjust its behavior in certain kinds of situations over time, according to good or
bad experiences of recent choices.

Free-flow architectures are first proposed by Rosenblatt and Payton in [29].
In his Ph.D thesis, T. Tyrrell [32] demonstrated that hierarchical free-flow ar-
chitectures are superior to flat decision structures, especially in complex and
dynamic environments. The results of Tyrrell’s work have been very influential,
for a recent discussion see [6].

An example of a free-flow architecture is depicted in Fig. 1.
The hierarchy is composed of activity nodes (in short nodes) which receive

information from internal and external stimuli in the form of activity. The nodes

Integrating Free-Flow Architectures with Role Models Based on Statecharts 107

Fig. 1. An example of a free-flow architecture.

feed their activity down through the hierarchy until the activity arrives at the
action nodes (i.e. the leaf nodes of the tree) where a winner-takes-it-all process
decides which action is selected. The main advantages of free-flow architectures
are:

– Stimuli can be added to the relevant nodes avoiding the “sensory bottle-
neck” problem. In a hierarchical decision structure, to make correct initial
decisions, the top level has to process most of the sensory information rele-
vant to the lower layers. A free-flow architecture does not “shut down” parts
of the decision structure when selecting an action.

– Decisions are made only at the level of the action nodes; as such all infor-
mation available to the agent is taken into account to select actions.

– Since all information is processed in parallel the agent can take different
preferences into consideration simultaneously. E.g. consider an agent that
moves to a spotted object but is faced with a neighboring threat. If the
agent is only able to take into account one preference at a time it will move
straight to the spotted object or move away from the threat. With a free-flow
tree the agent avoids the threat while it keeps moving towards the desired
object, i.e. the agent likely moves around the threat towards a spotted object.

Fig. 1 depicts a free-flow tree of the action selection of a simple robot. This
robot lives in a grid world where it has to collect objects and bring them to a
destination. The robot is supplied with a battery that provides energy to work.
The robot has to maintain its battery, i.e. when the energy level of the battery
falls below a critical value the robot has to recharge the battery at a charge
station. The left part of the depicted tree represents the functionality for the
robot to search, collect and deliver objects. On the right, functionality to main-
tain the battery is depicted. The System node feeds its activity to the Work
node and the Maintain node. The Work node combines the received activity

108 Danny Weyns, Elke Steegmans, and Tom Holvoet

with the activity from the energy level stimulus. The “+” symbol indicates that
the received activity is summed up. The negative activity of the energy level
stimulus indicates that little energy remains for the robot. As such the resulting
activity in the Work node is almost zero. The Maintain node on the other hand
combines the activity of the System node with the positive activity of the energy
need stimulus, resulting in a strong positive activity. This activity is fed to the
ToStation and the Charging nodes. The ToStation node combines the received
activity with the activity level of the not at station stimulus (the “*” symbol
indicates they are multiplied). In a similar way the Charging node combines the
received activity with the activity level of the at station stimulus. This latter is
a binary stimulus, i.e. when the robot is at the charge station its value is posi-
tive (true), otherwise it is negative (false). The ToStation node feeds its positive
activity towards the action nodes it is connected with. Each moving direction
receives an amount of activity proportional to the value of the gradient stimulus
for that particular direction. gradient is a multi-directional stimulus. The value
of this stimulus (for each direction) is based on the sensed value of the gradient
field that is transmitted by the charge station. In a similar way, the Charging
node and the child nodes of the Work node (Explore, Collect and Deliver) feed
their activity to the action nodes they are connected with. Action nodes that
receive activity from different nodes combine that activity according to a specific
function. The action nodes for moving actions use a function fm to calculate the
final activity level. A possibility definition of this function is the following:

AmoveD = max [(ANode + AstimulusD) ∗ AfreeD]

Herein is AmoveD the activity collected by a move action, D denotes one of
the four possible directions, i.e. D ∈ {N, E, S, W}. ANode denotes the activity
received from a node. The move actions are connected to four nodes: Node ∈
{Explore,Collect,Deliver,T oStation}. With each node a particular stimulus is
associated. stimulus∈{random direction, see object, see destination, gradient}
are all multi-directional stimuli with a corresponding value for each moving di-
rection. Finally, free is a multi-directional binary stimulus that indicates whether
the way to a particular direction is free for the robot to move to.

When all action nodes have collected their activity the node with the highest
activity level is selected for execution. In the example, the ToStation node is
clearly dominant over the other nodes connected to actions nodes. Currently
the East and West directions are blocked (see the free stimulus), leaving the
robot two possibilities to move towards the charge station: via North or via
South. According to the values of the guiding gradient field, the robot will move
northwards, see Fig. 1.

For the simple robot in the example, the free-flow tree is already fairly com-
plex. For a non-trivial agent however, the overall view of the tree quickly becomes
very cluttered. When a change is made in one part of such a tree it becomes
unclear how this affects the other parts. Although free-flow trees are at best
developed with a focus on a particular functionality of the agent, the archi-

Integrating Free-Flow Architectures with Role Models Based on Statecharts 109

tecture itself does not support any structure. From our experiences we learned
that it is unrealistic to assume that software engineers build a complex free-flow
architecture for complex applications, where agents can perform many actions.
For such applications, the architecture quickly becomes unmanageable, it is no
longer possible to have an overall view of the architecture.

2.2 Statechart Models

To develop non-trivial open MASs software engineers require suitable abstrac-
tions for describing and structuring agent behavior. The abstraction of a role
obviously is essential in this respect. Roles are quite general as core abstractions
for designing MASs, see e.g. Gaia [9], MESSAGE [8] and also [15][25]. Similar to
the definition in [35] we regard a role as an agent’s functionality in the context
of an organization. Roles provide the building blocks for the social organization
of a MAS. Agents are linked to other agents by the roles they play in the orga-
nization. The links can be explicit, e.g. a set of agents that pass objects along a
chain; or implicit, e.g. in an ant colony a dynamic balance exists between ants
that supply the colony with food and ants that maintain the nest.

A number of researchers have proposed state-based approaches to model
agent behavior. In SmartAgent [17], UML state machine models are used to
model JADE behaviors. [24] points to the strength of statecharts as a constraint
mechanism for agent interaction protocols. These and other related work use
statecharts to model agent behavior with a focus on inter-agent communication.
[18] and [2] are examples in which state machines are used to model reactive
behavior. In previous work, we proposed statecharts as a formalism to describe
agent behavior, see [19]. In that work we used a statechart formalism to model
the behavior of situated agents in terms of roles, with a focus on reusing roles in
different applications. Therefore, we extended the standard statecharts notation
with new concepts, such as pre-action and post-action. Fig. 2 depicts an example
of a role model for a scouting agent.

Although a statechart specification of agent behavior is simple to design and
to understand, it is typically a static, rigid model in that it leaves little room
for adaptive and explorative behavior. Practical experience with the statechart
formalism brought up a number of considerations:

– Action sequences are defined statically. The designer has to enumerate all
possible state transitions that can occur, or at least he has to distinguish
between discrete categories of environmental situations and corresponding
behavioral acts.

– The statechart formalism as developed is in principle only applicable for
deterministic agent systems. MASs however, are typically non-deterministic.
It is possible to integrate non-determinism in the modeling language, however
this would complicate the models significantly. As a result, the agents in
the applications performed behavior that was sometime unable to adapt to
different environmental situations.

110 Danny Weyns, Elke Steegmans, and Tom Holvoet

unborn alive dead

new@
node

got a node
view

done@
node

observing

working

born die

observe
node

drop
pheromone

observe
neighbors

clone

walk

count
 the

operation
time

drop operation
time

filter
neighbors

on next
operation

calculate
the

number
of clones

process
finished

Fig. 2. An example of a statechart model.

– A final remark relates to the set-up of the statechart modeling language.
Although different concerns of the agent’s behavior can be modelled sepa-
rately (in terms of building blocks provided by the statechart formalism),
different concerns are mixed into one overall diagram. In the proposed stat-
echart formalism no distinction is made between perceptions and actions
in the environment, both are modeled as transitions. There is however a
fundamental difference between these two activities. For a non-trivial agent
merging the two in one model leads to poorly organized models. Another
experience relates to the integration of coordination. In [20] we developed
inter-agent coordination as a set of pre- and post-actions. The integration of
the coordination in the agent’s behavior model works well for rather simple
agents, however for more complex cases, the models quickly become less sur-
veyable. The underlying problem is that the integration of different concerns
should be described separately of the concern descriptions themselves.

Other controlled techniques for engineering agent behavior have been applied
such as Petri Nets, see e.g. [23][10][7], however the relationship between these
techniques and our statechart modeling approach is out of the scope of this
paper.

2.3 Combining the Best of Two Worlds

Agents must be able to adapt their behavior to deal with dynamism and change.
Free-flow architectures enable adaptive behavior. However developing free-flow
trees for non-trivial agents is a quasi-impossible task for software engineers. Ar-
chitectures quickly becomes too complex to be manageable. To tackle complexity

Integrating Free-Flow Architectures with Role Models Based on Statecharts 111

suitable abstractions are needed to describe and structure the behavior of the
agent. The role statechart modeling language offers a means to this. To combine
the best of the two:

1. We extended the free-flow architecture with the abstractions of a role and a
situated commitment.

2. We revised the statechart modeling language, i.e. we refrain from considering
a statechart description of agent behavior as a kind of sequence chart, but
use statecharts to describe role composition and to structure related actions
in roles only.

As such statecharts structure the agent behavior reflected in the structure of the
free-flow tree. Statecharts also provide an easy way to communicate description
of the agent behavior at a higher level of abstraction.

3 Bringing the Statechart Models
and Free-Flow Architectures Together

In this section we discuss the combined adoption of statecharts with the ex-
tended free-flow architecture. We illustrate our explanation with an example
application. We start with a brief introduction of the example application. Next
we describe the behavior of the agents with the statechart modeling language.
Then we illustrate how the statechart models facilitate the structuring of a free-
flow architecture.

3.1 Example Application

In a current research project with an industrial partner we investigate how the
paradigm of situated MASs can be applied to the control of logistic machines.
Traditional systems use one central controller that instructs the machines to per-
form jobs based on a calculated plan. The centralized approach lacks flexibility
to deal with the increasing demands of adaptability and scalability. By looking
at machines as agents of a situated MASs, we aim to convert the centralized
control system into a self-managing distributed system, improving adaptability
and scalability.

For the case in this paper we limit the discussion to the Automated Guided
Vehicle (AGV) transport system. The AGV transport system is typically one, yet
a crucial part, of an integral logistic warehouse system. AGV’s are unmanned
vehicles that transport goods from one place to another. AGV’s can supply
basic/raw materials to a production department, serve as a link between different
production lines or store goods between different processes and connect to the
dispatch area.

In a central controlled approach, the functionality of the individual AGV’s
is rather limited. Each AGV is provided with basic infrastructure to ensure
safety, and a typical AGV is able to perform the pick and drop functionality

112 Danny Weyns, Elke Steegmans, and Tom Holvoet

autonomously. The distribution of jobs, the routing through the warehouse, col-
lision avoidance at junctions etc. are all handled by the central control system.

In this section we look at a number of basic roles for an AGV to deal with
jobs autonomously. We take into account functionality for the AGV to find a
job, to handle a job, to park when no more work has to be done and finally to
ensure that the battery is charged in time.

3.2 AGV’s Role Modeling

We distinguish two diagrams and one schema for role modeling. The role dia-
gram structures the agent roles and their interdependencies. The action diagrams
structure the related actions within the roles. Finally the commitment schema
defines the activation and deactivation conditions for a situated commitment.

Role Diagram. The roles and their interdependencies that describe the behav-
ior of an agent are described in a role diagram. Fig. 3 depicts the role diagram
of the AGV’s. A role diagram consists of a hierarchy of roles of which some are
related through situated commitments.

Fig. 3. The role diagram of the AGV.

A role is represented by a white oval and the name of the role is written
in the oval. A role can consist of a number of sub-roles, and sub-roles of sub-
sub-roles etc. As such the role diagram is typically composed as a hierarchy of
roles. Roles at the bottom of the hierarchy are called basic roles. The first role
of the AGV is the Active role consisting of two sub-roles, Search, i.e. a basic
role, and Work. The Work role is further split up in two sub-roles, Collect and
Deliver, two basic roles. In the Search role the AGV searches for a new job.
Once the AGV finds a job it will Collect the good associated with the job and
subsequently Deliver the good at the requested destination. Besides the Active
role, the AGV has the Maintain role and the Park role. The AGV executes the

Integrating Free-Flow Architectures with Role Models Based on Statecharts 113

Park role when it has no more work to do. In this role the AGV simply moves
to the nearest parking place. The Maintain role ensures that the AGV keeps its
battery loaded. When the energy level crosses a critical value, the AGV finishes
its current job and moves towards the nearest charging station. To find its way
to the charging station an AGV uses an internal gradient map. At regular time
intervals all charging stations broadcast their current status. AGV’s use these
messages to keep their gradient maps up to date.

A situated commitment is represented by a rounded rectangle and the name
of the situated commitment is written in the rectangle. A situated commitment
is defined as a relationship between one role, i.e. the goal role, and a non-empty
set of other roles, i.e. the source roles of the agent. When a situated commit-
ment is activated the behavior of the agent tends to prefer the goal role of the
commitment over the source roles. Favoring the goal role results in more con-
sistent behavior of the agent towards the commitment. An agent can commit
to itself, e.g. when it has to fulfill a vital task. However, in a collaboration,
agents commit relatively to one another, typically through communication. [34]
discusses mutual commitments between collaborating agents in detail. In Fig. 3,
the Maintaining commitment ensures that the AGV maintains its energy level.
Since energy is vital for the AGV to function, all roles (except the Maintain role
of course) are connected as source roles to the Maintaining commitment. The
Activation commitment is activated when the AGV starts to work. This com-
mitment ensures that the AGV remains active once it decides to start working.
Working is an example of a commitment in a collaboration. The commitment is
activated once the AGV accepts a job. This commitment ensures that the AGV
acts consistently with the job in progress. As soon as the job is finished, the
Working commitment is deactivated.

Action Diagram. Action diagrams are defined for the basic roles. An action
diagram describes the structure of the related actions for a basic role. In Fig. 4
the action diagram of the Maintain role of the AGV is depicted.

Fig. 4. Action diagram of the Maintain role.

114 Danny Weyns, Elke Steegmans, and Tom Holvoet

A state is represented by a white circle in the diagram. In Fig. 4 three states
can be distinguished: ToStation, Charging and Charged. Besides regular states
there are two special states. The default state, represented by a black circle,
indicates the typical start state of the action sequence of the modelled role. On
the other hand, there is the final state, represented by a circle with an F written
in it, that indicates the typical end state of the action sequence of the modelled
role. The default and final state are connected to the corresponding regular state
via an arrow.

A transition connects two states with each other. A transition expresses a
change of state due to the execution of an action. An action, which is added
to a transition, models the functionality that must be performed by an agent
to achieve a new desired state from an old state. An action is represented by a
white rectangle in which the name of the action is written and which is attached
to a transition. To fulfill the Maintain role the AGV has to perform four differ-
ent actions: follow gradient to find the charge station, and connect, charge and
disconnect to charge the battery (see Fig. 4). The execution of an action may be
constrained by a precondition. Only when the condition is satisfied the attached
action can be executed. A precondition is represented by a gray rectangle in
which the precondition is written and which is attached to an action. In Fig. 4
the gray rectangle with not at station denotes that the AGV keeps following
the gradient until it reaches the charge station. At that time the precondition
at station becomes true and that enables the AGV to connect to the charge sta-
tion. As long as the condition energy level < charged level holds, the AGV keeps
charging. Finally when condition energy level = charged level becomes true, the
AGV disconnects and that finishes the Maintain role.

Commitment Schema. For each situated commitment a commitment schema
is defined that describes the source roles and the goal role of the commitment
as well as its activation and deactivation conditions. Activation and deactiva-
tion conditions are boolean expressions based on the internal state of the agent,
perceived information or information derived from received messages. Activat-
ing situated commitments through communication enable situated agents to
setup explicit collaborations in which each participant plays a specific role. In
this paper we do not elaborate on this latter scenario, for a detailed discus-
sion we refer to [34]. Fig. 5 depicts the commitment schema for the situated
commitment Maintaining. This commitment schema expresses that when the
energy level of the AGV falls below the threshold to charge the situated commit-
ment Maintaining is activated. This will urge the AGV to execute the Maintain
role over the Active and Park roles. Once the battery is recharged the condition
energy level = charged becomes true and that deactivates the Maintaining
commitment.

3.3 Free-Flow Architecture

The free-flow tree describes the behavior of the agent in detail. The high-level
diagrams for roles and situated commitments described in the previous section

Integrating Free-Flow Architectures with Role Models Based on Statecharts 115

Fig. 5. The commitment schema for the situated commitment Maintaining.

Fig. 6. Skeleton structure of the free-flow tree according to the role diagram of Fig. 3.

serve as a basis for structuring the free-flow tree. The role structure as described
in the role diagram (see Fig. 3) is reflected in the skeleton structure of the
tree. Fig. 6 depicts the skeleton structure for the AGV example. Roles match
to trees in the free-flow tree, sub-roles to sub-trees etc. Situated commitments
on the other hand corresponds to connectors that connect the source roles of
the situated commitment with the goal role. When a situated commitment is
activated extra activity is injected in the goal role relative to the activity levels
of the source roles. Details are discussed shortly.

The action diagrams and commitment schemas enable to refine the skeleton
tree. Fig. 7 depicts the refined sub-tree for the Maintain role and the Maintaining
commitment.

States in the action diagram correspond to activity nodes in the tree. Pre-
conditions correspond to binary stimuli connected to the corresponding nodes.
Examples are the stimuli at station or connected (compare Fig. 4 and Fig. 7).
Each action in the action diagram of the basic role corresponds with an action
node in the tree. A number of other non-binary stimuli in the tree represent data
in the action diagram that determines the action selection. An example is the
stimulus gradient that guides the AGV to move towards the station.

The activation and deactivation conditions of the situated commitments,
described in the commitment schema, correspond to the conditions associated

116 Danny Weyns, Elke Steegmans, and Tom Holvoet

Fig. 7. Refined Maintain role and Maintaining commitment.

with the corresponding connectors in the free-flow activity tree. Fig. 7 illustrates
this for the Maintaining commitment.

3.4 The Complete Free-Flow Tree

The complete free-flow contains all detailed information needed for action selec-
tion. Fig. 8 depicts the completed subtree of the Maintain role and the situated
commitment Maintaining. The abstract action node follow gradient in Fig. 7 is
refined towards the different moving actions of the AGV. The stimulus gradient
is split up in a multi-directional stimulus. Each segment represents the tendency
(based on the value of the gradient field) of the AGV to move in a particular
direction. Besides, a number of extra stimuli represent data that influences the
action selection. An example is the multi-directional stimulus free that denotes
in which direction the AGV is able to drive.

Stimuli needed to verify the activation and deactivation condition are con-
nected to the situated commitment. The Maintaining commitment is activated
when the value of the energy level crosses the threshold to charge. The com-
mitment then calculates the extra activity to inject in the Maintain role. For
the Maintaining commitment this extra activity is calculated as the sum (“+”
symbol) of the activity level of the Active and Park role, i.e. the activity levels
of the top nodes of these roles. As soon as the battery level reaches the thresh-
old value charged the Maintaining commitment is deactivated and it then no
longer injects extra activity in the Maintain role.

Integrating Free-Flow Architectures with Role Models Based on Statecharts 117

Fig. 8. The complete Maintain role and Maintaining commitment.

4 Discussion

This paper introduces a practical approach to combine adaptiveness of agents
and MAS with rigid/controlled engineering. The approach enables engineers to
manage the complexity of designing free-flow architectures. The proposed role
abstraction allows to represent local agent activity. Roles however, not only
“chop up” the behavior of the agent into smaller logical parts, they also intro-
duce a means to enable explicit collaboration between situated agents, reified in
situated commitments. In the AGV case e.g., when an Searching AGV accepts
a job, it activates the Working commitment and that will bias the action selec-
tion of the AGV towards the Work role. As such, the AGV will act consistently
towards its commitment in the collaboration, i.e. its agreement to perform the
job in progress.

The focus of this paper is mainly on the integration of free-flow architectures
with role modeling based on statecharts. In ongoing work [30] we described a
design process for adaptive agent behavior as part of a multi-agent oriented
methodology. This process integrates the engineering approach for behavior de-
sign we have proposed in this paper and rigorously describes the subsequent
design steps. At the highest level, roles and their interdependencies are caught
into a high level model described making use of the statechart modeling lan-
guage. This model is used as a basis for designing a skeleton of the free-flow

118 Danny Weyns, Elke Steegmans, and Tom Holvoet

architecture. Next the skeleton is refined such that it contains all details needed
for action selection. Finally, the free-flow tree is mapped onto a class diagram
that serves as a basis for the implementation of the agent’s behavior.

Several agent-oriented methodologies acknowledge the abstraction of a role
as a core abstraction for designing multi-agent systems, examples are Gaia [36],
MESSAGE [8] or SODA [26]. In these methodologies the design process is de-
scribed independent of a particular multi-agent architecture, for a recent dis-
cussion see Chapter 4 of [21]. When it comes to building a concrete multi-agent
application however, the gap between the high level design models and the cho-
sen multi-agent architecture that is used to implement the multi-agent system
has to be filled. We aim to bridge this gap enabling designers to build concrete
multi-agent systems applications. In particular, the design process described in
[30] that builds upon the software engineering approach for behavior design pro-
posed in this paper, enables a designer to incrementally refine the model of the
agent behavior from a high level role model toward a concrete agent architecture
for adaptive behavior, in casu a free-flow architecture.

5 Conclusion

Engineering software for non-trivial open multi-agent systems is a challenging
task. In this paper we proposed a software engineering approach that combines
free-flow architectures for adaptive behavior with a statechart modeling lan-
guage that offers suitable abstractions. Free-flow trees are extended with the
abstraction of a role and a situated commitment. The earlier developed stat-
echart formalism is revised and adapted from a rigid description of action se-
quences towards a description of the role composition of the agent behavior and
a structuring of the related actions within the roles. In the paper we illustrated
the approach for a case study on controlling a collection of automated guided
vehicles.

Currently we are working on a design process for adaptive agent behavior
that integrates the engineering approach for behavior design we have proposed
in this paper. In future work we intend to extend the design process towards
other concerns that need to be engineered in situated MASs such as agent com-
munication and coordination, and the design of the environment of the MAS.

Acknowledgement

The research results presented in this paper have been obtained in the Con-
certed Research Action on Agents for Coordination and Control - AgCo2 project
(K.U.Leuven) and in the Egemin Modular Controls Concept - EMC2 project
(Flemish Institute for the Advancement of Scientific-technological Research in
the Industry - IWT).

Integrating Free-Flow Architectures with Role Models Based on Statecharts 119

References

1. Babaoglu, O., Meling, H., Montresoret, H.: Anthill: A Framework for the Devel-
opment of Agent-Based Peer-to-Peer Systems. International Conference on Dis-
tributed Computing Systems, Vienna, Austria (2002)

2. Balch, T., Arkin, R.C.: Communication in Reactive Multiagent Robotic Systems.
Autonomous Robots 1(1) (1995)

3. Bonabeau, E., Henaux, F., Guerin, S., Snyers, D., Kuntz, P., Theraulaz, G.: Rout-
ing in Telecommunications Networks with Ant-Like Agents. IATA (1998)

4. Brooks, R.: Intelligence without representation. Artificial Intelligence Journal,
Vol. 47 (1991)

5. Brooks, R.: Intelligence Without Reason, MIT AI Lab Memo No. 1293 (1991)
6. Bryson, J.: Intelligence by Design, Principles of Modularity and Coordination for

Engineering Complex Adaptive Agents. PhD Dissertation, MIT (2001)
7. Cabac, L., Moldt, D.: Formal Semantics for AUML Agent Interaction Protocol

Diagrams. 5th International Workshop on Agent-Oriented Software Engineering,
AOSE at AAMAS, New York (2004)

8. Caire, G., Leal, F., Chainho, P., et al.: Agent Oriented Analysis Using MES-
SAGE/UML. Agent-Oriented Software-Engineering II, Lecture Notes in Computer
Science, Vol. 2222, Berlin Heidelberg New York, Springer (2001)

9. Cernuzzi, L., Juanand, T., Sterling, L., Zambonelli, F.: The Gaia Methodology:
Basic Concepts and Extensions. Methodologies and Software Engineering for Agent
Systems, Kluwer (2004)

10. Cost, R.S., Chen, Y., Finin, T., Labrou, Y., Peng, Y.: Modeling agent conversations
with colored petri nets. Workshop on Specifying and Implementing Conversation
Policies, Seattle, Washington (1999)

11. Deneubourg, J.L., Aron, A., Goss, S., Pasteels, J.M., Duerinck, G.: Random Be-
havior, Amplification Processes and Number of Participants: How they Contribute
to the Foraging Properties of Ants. Physics 22(D) (1986)

12. Dorigo, M., Gambardella, L.M.: Ant Colony System: A Cooperative Learning Ap-
proach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary
Computation 1(1) (1997)

13. Drogoul, A., Ferber, J.: Multi-Agent Simulation as a Tool for Modeling Societies:
Application to Social Differentiation in Ant Colonies. Decentralized A.I. 4, Elsevier
North-Holland (1992)

14. Ferber, J.: An Introduction to Distributed Artificial Intelligence. Addison-Wesley
(1999)

15. Ferber, J., Gutknecht, O., Michel, F.: From Agents to Organizations: An Orga-
nizational View on Multi-Agent Systems. 3th International Workshop on Agent
Oriented Software Engineering, AOSE, Melbourne, Australia (2003)

16. Genesereth, M.R., Nilsson, N.: Logical Foundations of Artificial Intelligence, Mor-
gan Kaufmanns (1997)

17. Griss, M.L., Fonseca, S., Cowan, D., Kessler, R.: Using UML State Machine Models
for More Precise and Flexible JADE Agent Behaviors. 2th International Workshop
on Agent Oriented Software Engineering, AOSE, Bologna, Italy (2002)

18. Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Science of Com-
puter Programming 8(3) (1987)

19. Holvoet, T., Steegmans, E.: Application-Specific Reuse of Agent Roles. Software
Engineering for Large-Scale Multi-Agent Systems, Lecture Notes in Computer Sci-
ence, Vol. 2603, Berlin Heidelberg New York, Springer (2003)

120 Danny Weyns, Elke Steegmans, and Tom Holvoet

20. Janssens, N., Steegmans, E., Holvoet, T., Verbaeten, P.: An Agent Design Method
Promoting Separation Between Computation and Coordination. Symposium on
Applied Computing SAC, Nicosia, Cyprus (2004)

21. Luck, M., Ashri, R., D’Inverno, M.: Agent-Based Software Development. Artech
House (2004)

22. Maes, P.: Modeling Adaptive Autonomous Agents. Artificial Life Journal 1(1-2)
(1994)

23. Ferber, J., Magnin, L.: Conception de systemes multi-agents par composants mod-
ulaires et reseaux de Petri. Actes des journees du PRC-IA, Montpellier (1994)

24. Odell, J., Parunak, H.V.D., Bauer, B.: Extending UML for Agents. AOIS Workshop
at AAAI, www.auml.org (2000)

25. Odell, J., Parunak, H.V.D., Fleisher, M.: The Role of Roles. Journal of Object
Technology 2(1) (2003) http://www.jot.fm/

26. Omicini, A.: SODA: Societies and Infrastructures in the Analysis and Design
of Agent-Based Systems. Agent-Oriented Software Engineering, Lecture Notes in
Computer Science, Vol. 1957, Berlin Heodelberg New York, Springer (2001)

27. Parunak, H.V.D.: Go to the Ant: Engineering Principles from Natural Agent Sys-
tems. Annals of Operations Research 75 (1997)

28. Parunak, H.V.D.: The AARIA Agent Architecture: From Manufacturing Require-
ments to Agent-Based System Design. Integrated Computer-Aided Engineering
8(1) (2001)

29. Rosenblatt, K., Payton, D.: A fine grained alternative to the subsumbtion architec-
ture for mobile robot control. International Joint Conference on Neural Networks,
IEEE (1989)

30. Steegmans, E., Weyns, D., Holvoet, T., Berbers, Y.: Designing Roles for Situ-
ated Agents. 5th International Workshop on Agent-Oriented Software Engineering,
AOSE at AAMAS, New York (2004)

31. Steels, L.: Cooperation between distributed agents through self-organization. Pro-
ceedings of the First European Workshop on Modeling Autonomous Agents in a
Multi-Agent World, Elsevier Science Publishers, Holland (1990)

32. Tyrrell, T.: Computational Mechanisms for Action Selection. Ph.D Thesis, Uni-
versity of Edinburgh (1993)

33. Weyns, D., Holvoet, T.: A Formal Model for Situated Multi-agent Systems. Formal
Approaches for Multi-Agent Systems, Special Issue of Fundamenta Informaticae,
63(2–3) (2004)

34. Weyns, D., Steegmans, E., Holvoet, T.: Protocol Based Communication for Sit-
uated Multi-agent Systems. 3th International Joint Conference on Autonomous
Agents and Multi-Agent Systems, AAMAS, New York (2004)

35. Wooldridge, M., Jennings, N., Kinny, D.: The Gaia Methodology for Agent-
Oriented Analysis and Design. Autonomous Agents and Multi-Agent Systems 3(3)
(2000)

36. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing Multiagent Systems:
The Gaia Methodology. ACM Transactions on Software Engineering and Method-
ology 12(3) (2003)

{afgarcia,uira,lucena}@inf.puc-rio.br
http://www.teccomm.les.inf.puc-rio.br/socagents

public Result judgeProposal(...) {
...
lc.processInformation();
...

}

public void addPublication(...){
...
sensor.senseEvent();
...

}

lijunshancn@yahoo.com

hzhu@brookes.ac.uk

∈

⊆

•

•

•

�

A Formal Approach for the Modelling
and Verification of Multiagent Plans

Based on Model Checking and Petri Nets

Hyggo Oliveira de Almeida1, Leandro Dias da Silva1,
Angelo Perkusich1, and Evandro de Barros Costa2

1 Electrical Engineering Department, Federal University of Campina Grande,
Postal Code 10.105 – 58109-970,
Campina Grande, Paraı́ba, Brazil

{hyggo,leandro,perkusic}@dee.ufcg.edu.br
2 Information Technology Department, Federal University of Alagoas,

Maceió, Alagoas, Brazil
evandro@tci.ufal.br

Abstract. Multiagent systems are characterized by decentralized control and
agents that perform autonomous actions. The sequence of such actions are gen-
erally described by plans. An important issue in this context is how to verify the
correctness of plans when agents have unpredicted actions. In this paper, formal
modelling and verification guidelines to verify nondeterministic multiagent sys-
tem plans are introduced. The guidelines are based on HCPN modelling, simula-
tion, and model checking. The guidelines are conceptually introduced, and then
applied for a multiagent intelligent tutoring system modelling and verification.

1 Introduction

Multiagent Systems (MAS) have become a promising approach to develop complex
software systems [1]. Usually, the sequence of actions that agents have to execute is
defined by a plan. Planning is the process of generating a plan based on three essential
inputs: an initial state of the world; a set of possible actions that an agent can execute;
and a set of goals to be reached. Application areas of multiagent planning include multi-
robot environments [2], cooperating Internet agents [3], logistics [4], manufacturing
systems [5], and military tasks [6], among others.

In the context of planning, one key issue is how to verify the correctness of multi-
agent plans. Due to the inherent decentralized nature of MAS, agents have only partial
knowledge of the environment, and thus it is difficult to define deterministic choices
based on global information [7]. Usually, agent plans are built without considering un-
controllable and conflicting actions of other agents. Based on such actions and on a
nondeterministic plan, one can define a set of next states instead of only one for the
deterministic case [8]. Therefore, adding flexibility for the plan execution.

However, the generation or verification of nondeterministic plans may lead to the
well known state explosion problem. Thus, there is no single planning algorithm ap-
propriate for all systems of agents. Many plan verification methods are described in the
multiagent literature but they are efficient for some agent systems and inefficient for

R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 162–179, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Formal Approach for the Modelling and Verification of Multiagent Plans 163

others. A possible approach to deal with such situation is to adopt efficient techniques
for either plan generation or verification [9].

In this work model checking [10] is used to deal with the complexity associated with
the validation of nondeterministic plans for multiagent systems [11, 12]. Also, tech-
niques, such as simulation and message sequence charts (MSC) [13] have been applied.
In order to efficiently and systematically integrate these techniques, guidelines to model
and verify plans are introduced. Hierarchical Colored Petri Nets (HCPN) [14, 15] are
applied to model multiagent systems. In order to illustrate the use of these guidelines,
the verification of plans for a multiagent intelligent tutoring system is presented.

The remaining of this paper is organized as follows. In Sections 2 and 3, the mod-
elling and verification guidelines are introduced. Section 4 presents the case study based
on a multiagent intelligent tutoring system. The application of the guidelines for the
case study is presented in Section 5. In Section 6 related works are discussed. Finally,
in Section 7 final remarks are presented.

2 Modelling Guidelines

In this section, the guidelines to obtain a Hierarchical Colored Petri Net model for
multiagent systems are presented. As discussed in the introduction, these guidelines
allow a designer to obtain the model needed to apply the verification guidelines that are
introduced in Section 3. In Figure 1 the guidelines are illustrated, and are described as
follows.

Modelling Guideline 1 – Identify Types of Architectures for Agents

Depending on the application domain, a multiagent system may be composed by agents
with different internal architectures [16]. On the other hand, agents implementing the

1 2
B

C

C

B
A A

Architecture
Types

Same
architecture

Internal
Architecture

Modules

4

1: if mod3

2: goto 14

3: if mod5

4: goto 13

5: finish

1: if mod2

2: goto 12

3: if exists

4: goto 6

5: finish

1: if mod1

2: goto 6

3: if !exists

4: goto 7

5: finish

A

B

C

Functional
Scenarios
and plans

5

C

B

A

HCPN Models

3
B

C

A

Abstract
modules and

functionalities

Fig. 1. Guidelines for modelling multiagent plans.

164 Hyggo Oliveira de Almeida et al.

same functionalities usually have the same architecture. For instance, consider an infor-
mation retrieval multiagent system. Generally speaking, one such system is composed
by agents with different functionalities, namely: agents for information extraction, fil-
tering, searching, and so on. Thus, the designer must identify different types of archi-
tectures. The result of this guideline is a set of types of architectures for the agents. As
explained latter on, this guideline is necessary in order to verify the plans for different
types of architectures.

Modelling Guideline 2 – Group Functionalities for Agents in Modules
for Each Architecture Type

One major characteristic of the multiagent approach is the independence of the in-
ternal agent development paradigm. In the same way as many software engineering
paradigms, a common approach is to group functionalities into modules. Therefore, the
verification of properties defined for such modules can be performed locally.

If the internal agent architectures previously identified are not constructed based on
a modular based infrastructure, the functionalities of agents must be grouped in modules
for each type of architecture, as defined for the Guideline 1. This is important to build
plans describing high level modules as providers of functionalities. Thus, it is possible
to point out which module or functionality does not satisfy a specific property.

Modelling Guideline 3 – Define Functionalities and Modules for Modelling

In a multiagent system, some features are generally shared by all internal agent architec-
tures. Depending on the properties to be verified, some functionalities can be abstracted
from the model. Examples of such features are related to agent communication, which
can be omitted if there is no security, performance, or protocol-related issues to ver-
ify. In order to make the model more concise and the verification more efficient, the
designer must define which functionalities and modules must be modelled in order to
proceed to the verification guideline.

Modelling Guideline 4 – Define/Identify Agent Plans

As mentioned before, the sequence of agent actions in multiagent systems are usually
described by plans. If the system being modelled is executed based on agent plans, then
skip this guideline. If there are no plans defined for each agent, build execution sce-
narios. This is necessary to define agent execution algorithms in the first verification
guideline, as detailed in Section 3. In some cases, agents with the same architecture
have also the same plan. Scenarios should be described considering modules and func-
tionalities identified in the previous guideline.

Modelling Guideline 5 – Construct Hierarchical Colored Petri Net Models
for Each Agent Architecture

Construct a Hierarchical Colored Petri Net (HCPN) model for each type of architec-
ture previously defined, as discussed for Guideline 1. The most important characteristic
is that the model must capture the internal behavior of the agents, according to their
architecture.

A Formal Approach for the Modelling and Verification of Multiagent Plans 165

After the application of modelling guidelines, an HCPN model for each architecture
and a description for each agent plan is obtained. The models together with the plans are
then used for the verification, according to the guidelines that are explained as follows.

3 Verification Guidelines

A formal model of a system allows its verification before it is built in order to determine
design problems, or can be used to improve an existing one. There are several ways to
analyze a system, such as simulation and model checking, among others. For HCPN
models, the tool set Design/CPN [17] is adopted, in the context of this work, for graph-
ical edition, simulation, automatic generation of Message Sequence Charts (MSC), and
to perform model checking. The simulation gives the designer the insight about the
behavior of the system. The generated MSCs are useful to observe different execution
traces for the models, and abstracting the token game of a Petri net simulation [14].
An MSC automatically generated during a simulation run is then used to define pred-
icates related to the model that are necessary to perform model checking. Thus, these
predicates are used to prove desired properties for a given plan.

It is important to observe that simulation does not guarantee that the system always
behaves as expected, since only one possible execution trace is captured. Therefore it
is necessary to verify the plan for all possible behaviors, or traces. To do so, model
checking is applied. The model checking technique verifies if a model M satisfies a
given specification f , that is denoted as: M |= f [10]. In the context of this work
the model is an HCPN, and the specification is a temporal logic formula. The library
ASK/CTL [18] for the Design/CPN is used to perform model checking. The temporal
logic formulae specify the desired scenarios. The model checking is performed on the
state space for the HCPN model, generated using the Design/CPN toolkit, to verify
whether the desired properties are satisfied by the HCPN model or not. In the following
it is discussed how the plans for each HCPN model for an agent is analyzed.

In order to prove the correctness of the plan a set of verification guidelines is de-
fined. These guidelines favor a systematic proof method because the designer can use
the same reasoning for every verification procedure in the context of plan verification
for multiagent systems. In Figure 2 the guidelines are illustrated, and are detailed as
follows.

Verification Guideline 1 – Describe the Overall Execution Plan

Define an abstract description of the behavior of each agent. The idea is to describe the
high level behavior of the agent without considering specific activities. For this guide-
line, what the agent does is defined. An algorithm based notation can be used to describe
the execution plan, as adopted in this work. In some situations this description can be
too complex to be verified at once. Nevertheless, they are useful for the Guideline 2, as
detailed bellow.

Verification Guideline 2 – Identify Specific Plans

The overall execution plan description can then be divided into specific plans for spe-
cific activities. This is a suitable way to verify multiagent plans because it is possible

166 Hyggo Oliveira de Almeida et al.

1 2

Overall
Execution
Planning

Specific
Plans

4

1: if mod3
2: goto 14
3: if mod5
4: goto 13
5: finish

1: if mod1
2: goto 6
3: if !exists
4: goto 7
5: finish

A
B

5

Temporal
Logic

3

1: if mod2
2: goto 12
3: if exists
4: goto 6
5: finish

C

1: if mod3

2: goto 14

1: if mod3

2: goto 14

3: if mod5

1: if mod3

2: goto 14

C

1: if mod3

2: goto 14

1: if mod3

2: goto 14

3: if mod5

1: if mod3

2: goto 14

B

1: if mod3
2: goto 14

1: if mod3
2: goto 14
3: if mod5

1: if mod3
2: goto 14

A 1: if mod3

2: goto 14

1: if mod3

2: goto 14

3: if mod5

1: if mod3

2: goto 14

C

1: if mod3

2: goto 14

1: if mod3

2: goto 14

3: if mod5

1: if mod3

2: goto 14

B
A

Generate
MSC

Model
Checking

1: if mod3

2: goto 14

1: if mod3

2: goto 14

3: if mod5

1: if mod3

2: goto 14

C

1: if mod3

2: goto 14

3: if mod5

1: if mod3

2: goto 14

B
A

fun PB = true;
fun PA = PB

fun PC =false;
fun PD = true;

eval_node node1;
return := true;
Init node

1: if mod3

2: goto 14

1: if mod3

2: goto 14

3: if mod5

1: if mod3

2: goto 14

C

1: if mod3

2: goto 14

3: if mod5

1: if mod3

2: goto 14

B
A

Fig. 2. Guidelines for the verification of multiagent plans.

to reduce the size of the formulae to be verified. Also, it is easier to find and fix errors
since the specific activities are performed for each module. Thus, making possible to
identify exactly which module is not behaving properly. In the case study presented
in Section 4, the execution plan of an agent can be divided in the specific component
plans. Again, an algorithm based notation is used to describe specific plans.

Verification Guideline 3 – Generate the MSC for the Plans

As said in the beginning of this section the MSC is useful to illustrate the execution
trace in a more intuitive way. Also, usually the Petri net model is a complex model.
Therefore it is necessary to generate the MSC for each specific plan identified on the
previous guideline. These MSCs define the sequence of actions for a given plan and
which modules perform the actions.

Verification Guideline 4 – Specify the MSC in Temporal Logic

Based on the MSC the designer can specify the behavior using temporal logic, in or-
der to prove whether this behavior holds for every possible behavior or not. That is
because the MSC is generated at simulation time, and it covers only one possible path.
The specification is constructed using atomic propositions and temporal modalities and
quantifiers to form temporal logic formulae.

Verification Guideline 5 – Perform Model Checking

The last guideline is to perform model checking to verify whether the model models the
specified properties or not. As said before, the model checking is performed using the
Design/CPN and the library ASK/CTL. First, the state space, that is called occurrence

A Formal Approach for the Modelling and Verification of Multiagent Plans 167

graph, is generated for the model. The occurrence graph is a directed graph that repre-
sents all the possible behaviors of a Petri net model. After that, the model checking is
executed to verify if the specification in temporal logic defined in the previous guideline
is satisfied in the state space. If the specification is satisfied, the plan is proved correct.
Otherwise there can be an error but as the plan is specific for an activity, and the activ-
ities are related to modules, it is straightforward to locate the error source. Moreover it
is possible to use the counterexample to identify exactly for which sequence of actions
the specification is violated [10].

The guidelines 2, 3, 4, and 5 can be performed one-by-one for each plan, or for all
plans before proceeding to the next guideline. When analyzing systems for complex
domains where there are several entities communicating with each other or executing
independently, it is necessary to use several tools. For the verification guidelines defined
in this section, simulation, message sequence charts, and model checking are used in
an organized and systematic way to verify execution plans for agents’ activities. Each
tool is used to solve an specific analysis problem. To know, the MSC is used to identify
exactly what flow, in exactly which place must be analyzed. This is done by simula-
tion. Without the MSC must be difficult to identify the properties because the model is
usually complex. But the simulation follows only one possible path. Therefore it is per-
formed model checking to prove the properties for all possible behaviors. Using these
tools in an integrated way makes the analysis activity easier.

4 Multiagent Intelligent Tutoring System

In this section the architecture of a multiagent intelligent tutoring system is presented.
Such system is based on problem solving cooperative based learning activities, such as
problem resolution, instruction, hints, and explanations. The architecture is based on
the MATHEMA architecture [19] that has been applied in various domains, such as
algebra [19] and musical harmony [20]. In Figure 3 the high-level architecture of the
system is shown, and main actors are:

SATA

Interface Agent

Teacher Learner

Fig. 3. High level architecture for the intelligent tutoring system.

168 Hyggo Oliveira de Almeida et al.

– Learner: a human agent involved in a learning activity for a given knowledge do-
main.

– Teacher: a human agent to aid and facilitate the interaction between the learner
and the system.

– SATA (Society of Artificial Tutoring Agents): implements the mechanisms to
promote the successful interaction between the learner and the teacher. The SATA
defines the multiagent intelligent tutoring system.

– Interface agent: promotes the interaction between the learner, the teacher, and the
SATA.

In this section the focus is the architecture for an agent in the SATA. Each agent in
such architecture is composed by three systems: tutoring, social, and distribution. The
social and distribution systems implement the functionalities to promote the interaction
among the agents. These systems are not discussed in this paper. The reader may refer
to [19] for a detailed presentation.

The tutoring system (TS) implements the mechanisms to promote the cooperative
interactions between an agent and the learner during the learning process. It is the “in-
telligent system” of an agent and is composed by the following entities.

Mediator

Mediator implements the interaction mechanisms with the Interface Agent and thus
with the learner. It also selects the suitable reasoner in order to solve the task defined
by the learner.

Reasoners

Reasoners are the components that implement the pedagogic functionalities of the intel-
ligent tutoring system. The reasoners are organized as container modules that compose
the tutoring system of an agent defined for the SATA, such as: tutor module, expert
module and the leaner modelling module. These three modules are explained in the
following.

– Tutor module: reasoners belonging to this module implement the pedagogical in-
teractions with the learner.
• Pedagogical tasks manager selects the resources that are available to the learner.
• Problem solver replies to the questions of the learner.
• Evaluator evaluates the answers given by the users.
• Remediator defines the next system action in order to improve the performance

of the learner based on a cognitive diagnosis.
– Expert module: reasoners that belong to this module implement the subjective

problem evaluation for the learner. Its response is inferred based on production
rules stored in a knowledge base. This functionality is provided by the reasoner
inference engine.

– Leaner modelling module: reasoners that belong to this module are responsible
to acquire, maintain, and represent the individual information about the learners.
Such information are then used to define the best teaching strategy to be applied for
a given learner.

A Formal Approach for the Modelling and Verification of Multiagent Plans 169

• History Manager is responsible for the organization and storing of all peda-
gogical knowledge already demonstrated to the learner.

• Profile Manager is responsible for the management of the learning level for
each learner for a given topic.

• Cognitive Diagnostic is responsible for the definition of the cognitive level of
each learner according to the profile.

Resources Base

Resources base is the module that makes available the pedagogical resources, produc-
tion rules and models for learners. It is composed by the following components. The
Resource Access Manager is responsible to provide access to the resource base and its
repositories. Such repositories are described below.

– pedagogical knowledge: resources such as definitions, examples, exercises, and
hints.

– learner model: information related to the profile of the learner and the resources
already studied.

– knowledge bases: inference rules used by the inference engine to evaluate the an-
swers given by the learner.

5 Applying the Guidelines to the Case Study

5.1 Modelling Guidelines

The application of the modelling guidelines introduced in Section 2 for the case study
described in Section 4 is presented below.

Modelling Guideline 1 – Identifying Types of Agent Architectures That Compose the
Multiagent System. In the ITS case study, all agents described in Section 4 have the
same internal architecture. Thus, there is only one type of architecture. The result of the
application of this guideline is the architecture shown in Figure 4.

Modelling Guideline 2 – Grouping Agent Functionalities in Modules for Each Ar-
chitecture Type Defined in the Previous Guideline. As said before, the architecture of
the agents for the ITS are composed by three systems (tutoring, social and distribution),
which have specific functionalities. Each system are defined as a composition of more
specific modules (See Figure 4). These modules are the result of this guideline.

Modelling Guideline 3 – Abstracting the Modules That Implement Functionalities
Which Are Not Relevant to the Verification. For the ITS case study, modules that im-
plement communication and interaction functionalities are abstracted from the model.
Therefore, only modules of the tutoring system are considered (see Figure 4). The
reader may refer to [21] for a detailed discussion concerning to communication and
interaction modelling and verification of an ITS multiagent system.

170 Hyggo Oliveira de Almeida et al.

Tutor Module

Learner
Modelling
Module

Expert Module

Reasoners

Mediator

Tutoring System

Social System

Distribution System

SATA

Interface Agent

Problem
Solver

Evaluator

Pedagogical
Task Manager

Remediator

Cognitive
Diagnostic

Profile
Manager

History
Manager

Inference
Engine

2

7

3

7

6e6c

6b

6d

5e

5d

5g
5b

4c

5f5h

a b

c d

e

f g

h

8

1

Resource Bases
Resource Access Manager

i

Knowledge
Bases

Learner
Model

Pedagogical
Knowledge

Learner

Fig. 4. Functional view for the tutoring system.

Modelling Guideline 4 – Describing a Plan or a Functional Scenario for Agents,
Considering the Modules Previously Defined. In Figure 4, it is illustrated the func-
tional view of an agent taking into account the interactions with other agents and with
the learner. The functional scenario starts when a learner asks to the multiagent intel-
ligent tutoring system for a resource. It can be a definition, an example, an exercise,
a hint, the solution of a proposed problem or the evaluation of an answer for a prob-
lem proposed to learner by the system. Based on this initial state for the scenario the
sequence of events and interactions are discussed in the following.

1. The learner asks the interface agent for a resource of a pedagogical unit.
2. The interface agent selects an agent in the SATA responsible for pedagogical unit

and send the requisition to it. The selected agent is the supervisor agent for the
current actions.

3. The mediator of the agent receives the requisition and selects the reasoner to exe-
cute the requested task.

4. When the learner asks for a problem resolution proposed by him, the reasoner se-
lects a problem solver (see the problem solver box labelled with A in Figure 4) that
executes the following steps:
(a) It divides the problem to be solved into smaller sub-problems.
(b) Solves each sub-problem.
(c) When there are sub-problems it cannot solve, it forwards them to the social

system. The social system allocates other agents to solve them.

A Formal Approach for the Modelling and Verification of Multiagent Plans 171

(d) When all the sub-problems are solved the answer is then returned to the medi-
ator (see step 7).

5. If the learner asked for a resource, the selected reasoner is then the pedagogical
tasks manager (label B in Figure 4), and then executes the following steps:
(a) Asks the mediator (D) for the next type of resource to be presented to the

learner according to his cognitive profile.
(b) The mediator asks the profile manager (F) to recover the level of the learner

with respect to the pedagogical unit being studied.
(c) The profile manager asks the history manager (G) for the history of resources

already given to the learner for the current pedagogical unit.
(d) The history manager asks the resources access manager (I) for the list of re-

sources already given by the learner and return it to the history manager, that
returns it to the profile manager.

(e) Based on the learner history, the profile manager defines his quantitative knowl-
edge level, based on the previous scores obtained for the other resources be-
longing to the current pedagogical unit. Then, it returns this score to the reme-
diator.

(f) The remediator gets the quantitative score and forwards it to the cognitive diag-
nostic (E) so that it can identify the qualitative level of the learner with respect
to the current pedagogical unit, such as, for example, basic, intermediary, or
advanced.

(g) The cognitive diagnostic returns the qualitative level of the learner to the reme-
diator, that defines the type of resource to be given to the learner and forwards
them, the level “n” and resource “t”, to the pedagogical tasks manager.

(h) The pedagogical tasks manager asks for a resource “t” and level “n” to the
resources access manager and returns the resource to the mediator (see step 7).

6. If the leaner asked for an evaluation of his answer to a problem previously given by
the system (what would occur in step 5) the selected reasoner is evaluator (C), that
thus executes the following steps:
(a) If the problem is an objective one, the evaluator verifies if the correct answer

to the question is the same as the one given by the learner and returns the score
to the mediator (step 7).

(b) In the case that the problem is subjective, it is forwarded to the inference engine
(H) that divides it in smaller parts.

(c) The inference engine then asks to the resources access manager for knowledge
inference rules and tries to validate each part of the solution.

(d) When the parts are validated, the whole solution is then validated. Therefore,
the final score is returned to the evaluator.

(e) If some parts cannot be validated, they are forwarded to the social system, and
then other agents are allocated to evaluate them.

(f) The evaluator then updates the history of the learner and returns the score to
the mediator.

7. Based on the answer given to the learner, the mediator forwards it to the interface
agent.

8. The interface agent then forwards it to the learner: the resolution of the problem
proposed by the learner, a resource or the evaluation of the answer for a problem
proposed by the system together with the score.

172 Hyggo Oliveira de Almeida et al.

Modelling Guideline 5 – Constructing an HCPN Model for Each Agent Architecture.
The application of this guideline is presented in [21], where the complete Hierarchical
Colored Petri Net model for the ITS case study is presented. In Figure 5, the hierarchy
page for the model is shown. It has been graphically organized to be similar to the
architecture diagram shown in Figure 4 and explained in Section 4, and therefore it is
not detailed.

Declarations#1Hierarchy#10
Student#2 M Prime

Interface Agent
InterfaceAgent#3

SATA

Tutoring System

Mediator
Mediator#4

Reasoners

ProblemSolver#

Remediator#

PedagogicalTaskManager

Evaluator#18

Tutoring
Module

InferenceMachine#1

Expert
Module

CognitiveDiagnostic#1

ProfileManager#1

HistoryManager#1

Student
Modeling
Module

Resource
Base ResourceFinder#7HistoryUpDate#8 HistoryFinder#10RuleFinder#11

ModelChecking#9
Send_Task_To_IA

Send_To_Mediator

Send_To_PTMSend_To_PS

Request_Next_Resource

Send_To_Me

Eval_Sub_Answer

Do_Cognitive_Dialogue

Send_Recovery_To_PM

Send_Rec_To_HM

Recover_Resource

Actualize_History

Send_Info_To_HF

Send_To_RF

Fig. 5. Hierarchy page for the ITS agent Colored Petri Net Model.

5.2 Verification Guidelines

In the following the guidelines to validate the agent plan represented by model shown
in Figure 5 are applied.

Verification Guideline 1 – Defining the Overall Plan for the Agents. Based on the
functional scenario previously described, an algorithm-like style is used to present the
overall plan for the ITS agents (Algorithm 1).

A Formal Approach for the Modelling and Verification of Multiagent Plans 173

Algorithm 1 Overall Execution Plan.
1: Verify the learning level of the student
2: if The desired level has reached then
3: Go to step 17
4: else
5: Define the new step p
6: end if
7: if p is an explanation or an example then
8: Show it
9: Go to step 15

10: else
11: Show an exercise
12: end if
13: Receive the answer from student and try to validate it
14: Define an score to the exercise according to the validation
15: Increment the learning level
16: Go to step 1
17: Inform the student that this topic is over and pass the control to another agent

Verification Guideline 2 – Defining Specific Plans for the Agents. Based on the over-
all plan previously defined, the specific plans for the ITS agents are described below.

Specific Plan 1 – Suppose that the student requests the system to solve some prob-
lem. This is the simplest type of interaction between them. In this case, the system do
not try to verify the learning level of the student, neither to increment it after the end
of the activity. By this request the student is using the system as a problem solver. The
module called Problem Solver processes this request as follows. Every agent has the
knowledge in a specific expertise, and when the problem can be solved by the current
agent, the request is processed. On the other hand, the agent requests a cooperation with
another agent that can solve the problem. In either case, the answer is returned to the
student.

Consider the first order equation 3x/4 + 5x/3 = 10. In order to solve it, an agent
must ask for a cooperation with another agent that knows how to calculate the least
common multiplier between them. This is a simple example that is useful to see how
the system works. Therefore, according to Algorithm 1, the part of the plan to deal with
a problem proposed by the student is show in Algorithm 2. In this plan, the Interface
Agent and the Mediator module are omitted because they are used in all interactions.
Therefore they are implicitly considered, for the sake of simplicity and space limita-
tions.
Specific Plan 2 – Suppose the situation where the student must solve a problem and send
it to system to analyze his answer. In this scenario, the reasoner used is the Evaluator.
In Algorithm 3 the plan for this interaction is specified.
Specific Plan 3 – The last possibility is when the student needs a resource. A resource
can be, for instance, an explanation, or a definition, for example. This is the most com-
plicated plan because several modules are used to execute it. In Algorithm 4, the defini-
tion of this plan is shown. For this algorithm it is used a name convention for modules,

174 Hyggo Oliveira de Almeida et al.

Algorithm 2 Problem Solver Plan.
1: if Problem can be solved locally then
2: Solve it
3: else
4: Ask for cooperation
5: end if
6: Return the result to the student

Algorithm 3 Evaluator Plan.
1: if Problem is objective then
2: Compare the answer with stored result
3: Go to step 13
4: end if
5: Call the Inference Engine module
6: Divide the subjective problem into smaller ones
7: Try to validate each part using inference rules in the resource base
8: if All parts can be validated then
9: Go to step 13

10: else
11: Ask for cooperation
12: end if
13: Give a score
14: Update the history
15: Return the score to the student

where PTM represents Pedagogical Task Manager, Rem represents Remediator, PM
represents Profile Manager, HM represents History Manager, and CD represents Cog-
nitive Diagnostic.

Verification Guideline 3 – Generating an MSC for Each Specific Plan. In Figure 6 it
is shown the MSC for the problem solver specific plan, that is described in Algorithm 2.

Send problem

Return solution

Solve the

problem

Student Problem solver

Fig. 6. Execution plan for the problem solver.

Algorithm 3 is quite more complicated then the previous one. Therefore the im-
portance of the use of MSC is clear for this case. The message sequence charts that
represent the plans to analyze subjective and objective problems are shown in Figure 7
and 8, respectively. They are related to the evaluation of the specific plan described in
Algorithm 3.

A Formal Approach for the Modelling and Verification of Multiagent Plans 175

Algorithm 4 Pedagogical Task Manager Plan.
1: PTM asks the student level to Rem
2: Rem asks the quantitative level to PM
3: PM asks the student history to HM
4: HM gets the history from the resource base
5: HM sends history back to PM
6: PM define the student profile
7: PM sends profile back to Rem
8: Rem asks the qualitative level to CD
9: CD define the next resource and the level

10: CD sends resource and level back to Rem
11: Rem asks the resource to resource base
12: Rem sends the resource back to PTM
13: PTM sends the resource back to student.

Evaluator

Request

Score

Subjective

Answer

Update Student

History

Student Evaluator Inference Engine

Score

Validate Subjective

Answer

Fig. 7. Execution plan for the subjective problem evaluation.

Evaluator

Request

Score

Validate Objective

Answer

Update Student

History

Student Evaluator Inference Engine

Fig. 8. Execution plan for the objective problem evaluation.

In the case of an objective problem solved by the student, the system must compare
the given answer with the correct answer in order to give the student a score and to
update his history and profile. The same holds for subjective problem. The difference
in this case is that the inference machine must be used in order to apply specific rules
to try to validate the answer.

Finally, the MSC of the plan related to the pedagogical task manager described in
the Algorithm 4 is illustrated in Figure 9.

176 Hyggo Oliveira de Almeida et al.

Student

Request

Student Task Manager Remediator

Profile

Manager

Cognitive

Diagnostic

Ask

Qualitative

Level

Ask

History

Profile

Resource

Identifier

Resource

History

Manager

Ask

History

History

GetHistory

GetResource

Ask

Quantitative

Level

Define

Resource

Define

Profile

Resource

Identifier

Fig. 9. Execution plan for the Pedagogical Task Manager.

Verification Guideline 4 – Specifying Temporal Logic Formulae. It is used here a
simplified syntax for the propositions and formulae to improve readability. The actual
formulae are more complicated due to the syntactic constructions of ASK/CTL and
could be complicated for a reader not familiar with ASK/CTL to understand it.

The code for the atomic propositions specifying the properties defined for the MSC
shown in Figure 6, is as follows. In this fragment of code PA is the atomic proposition
that abstracts the fact that STUDENT1 is sending a problem to the system. In the same
way PB represents the fact that the Problem Solver module has been called. Finally PC
represents that the answer has been sent back to student and the model reached the final
state.

fun PA n=(Mark.Student’List_Task n=(STUDENT_1,[SEND_PROBLEM]));
fun PB n=(Mark.ProblemSolver’Solving n = (STUDENT_1,SEND_PROBLEM,AGENT_1));
fun PC n=(Mark.Student’END n=(STUDENT_1));

In the following the code for the formulae is shown. Using the atomic propositions
previously shown, f ormula1 is used to verify that whenever it is possible to have PA
evaluated to true, then eventually PB is also evaluated to true. The same reasoning holds
for f ormula2.

val formula1 = AND(POS(PA),(EV(PB)));
val formula2 = AND(POS(PB),(EV(PC)));

The atomic propositions and formulae are similar for the verification of all plans.
The major difference is related to the marking of the place to predicate, and how many
predicates are necessary to prove the current plan. Therefore, it is not necessary to list
all atomic propositions and formulae for all plan verification. The code for the problem
solver plan verification can be used as an example.

Verification Guideline 5 – Model Checking. The last step is to perform model check-
ing using the model and the atomic propositions and formulae specified in the Guide-

A Formal Approach for the Modelling and Verification of Multiagent Plans 177

line 4 above. In the following the piece of code that implements this step is shown.
The eval node is used to evaluate the truth value for the formulae. Therefore, if both
formulae are evaluated to true then the designer receives a message informing that the
plan has been validated. Otherwise an error message is shown.

bReturn1 := eval_node formula1 InitNode;
bReturn2 := eval_node formula2 InitNode;
if ((!bReturn1 = true) andalso (!bReturn2 = true))

then DSUI_UserAckMessage("The plan has been validated")
else DSUI_UserAckMessage("There is a problem with this plan");

For this example the verification for one plan is detailed. Nevertheless, it is im-
portant to point out that the same reasoning strategy can be applied for every plan.
Therefore, using theses guidelines it is possible to specify and verify all the plans for
every activity of the agents.

6 Related Work

Many researchers have applied Petri nets to the multiagent domain. In [22] a Colored
Petri net for a multiagent application, in order to analyze agent social behaviors, is
presented. Agent cooperation and coordination are analyzed using colored petri nets in
[23, 24]. An agent oriented programming extension for Colored Petri nets is presented
in [25]. In [26], Recursive Petri Nets are used to model multiagent plans.

In the context of multiagent planning, the model checking approach has been used
to verify plans of the agents based on various formalisms. In [27] it is proposed an
OBDD based planning framework for multiagent and nondeterministic domains. In
[28] is presented an approach for modelling and verifying multiagent behaviors us-
ing Predicate/Transition Nets. In [29] G-net is extended for modelling inheritance of
agent classes in multiagent systems, which provides a clean interface between agents
with asynchronous communication ability and supports formal reasoning.

There are other works and formalisms for multiagent plan modelling and verifica-
tion. However, the approach proposed in this paper gathers various tools, such as MSC,
simulation, and model checking, to provide a systematical way for modelling and ver-
ifying multiagent plans. Design CPN support makes the verification an automatic ac-
tivity, representing an advantage if compared to Predicate/Transition works. Moreover,
guidelines are generic and can be applied to any multiagent domain.

7 Final Remarks

In this paper it is introduced an approach to verify nondeterministic execution plans
for multiagent systems using Hierarchical Colored Petri Nets. This approach is based
on guidelines for the modelling and verification activities. These guidelines are used to
fully implement the presented solution using available computational tools.

In order to illustrate the introduced approach, it has been applied to a multiagent
intelligent tutoring system. Thus, the guidelines have been effectively applied to a real-
istic example. The presentation of the case study was kept simple enough to make the

178 Hyggo Oliveira de Almeida et al.

concepts and the application of the guidelines clear. Moreover, based on the example,
the applicability of the approach has been validated taking into account scalability and
complexity issues. The scalability issue is implicitly treated, since the guidelines intro-
duced are not coupled with the number of agents and the types of architectures that can
be defined. Also, the approach promotes an effective way to manage the state explosion
problem due to the fact that multiagent plans are verified based on local plans for types
of architectures.

As future work automatic generation of plans is currently being investigated. This
is important because for multiagent systems it can be difficult or even impossible to
predict the behavior of all the agents in advance. Moreover, the approach discussed in
this work is being applied to other domains such as, for example, sensor networks and
manufacturing planning.

Acknowledgements

The research reported is this chapter is partially supported by grants 305110/2002-0 and
200365/2004-5 from the Brazilian National Research Council (CNPq), a scholarship
from CNPq for the first author and a scholarship from CAPES for the second author.

References

1. Jennings, N.R.: An Agent-based Approach for Building Complex Software Systems. Com-
mun. ACM 44 (2001) 35–41

2. Ball, D., Wyeth, G.: Multi-Robot Control in Highly Dynamic, Competitive Environments.
In: RoboCup 2003: Robot Soccer World Cup VI. Volume 3020 of Lecture Notes in Computer
Science. Springer-Verlag (2003) 385–396

3. Fernández, D.C., López, J.M.M., Millán, D.B.: A Multiagent Approach for Electronic Travel
Planning. In: Proceedings of 2nd International Workshop Agent-Oriented Information Sys-
tems/CAiSE’00, Stockholm, Sweden (2000)

4. Henoch, J., Ulrich, H.: Agent-Based Simulation Platform for Evaluating Management Con-
cepts. In: Proceedings of the 4th International Eurosim 2001 Congress, Delft, Netherlands,
TUDelft Press (2001) 1–6

5. Kornienko, S., Kornienko, O., Levi, P.: Flexible Manufacturing Process Planning based on
the Multi-agent Technology. In: Proceedings of 21st the IASTED International Conference
on Applied Informatics, Innsbruck, Austria, ACTA Press (2003) 87–92

6. Upal, M.A., Fung, F.: Dynamic Plan Evaluation for Military Logistics. In: Proceedings of
the Seventh International Conference on Artificial Intelligence and Soft Computing, ACTA
Press (2003) 87–92

7. Xuan, P., Lesser, V.: Using Agent Commitments as Planning Contexts. International Journal
on Cooperative Information Systems (2003, under review)

8. Bowling, M.H., Jensen, R.M., Veloso, M.M.: Multiagent Planning in the Presence of Multi-
ple Goals. In: Intelligent Planning. Intelligent Series. Wiley (2004, to appear)

9. Pistore, M., Traverso, P.: Planning as Model Checking for Extended Goals in Non-
deterministic Domains. In: IJCAI. (2001) 479–486

10. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge,
Massachusetts (1999)

11. Giunchiglia, F., Traverso, P.: Planning as Model Checking. In: ECP. (1999) 1–20

A Formal Approach for the Modelling and Verification of Multiagent Plans 179

12. Cimatti, A., Roveri, M.: Conformant Planning via Symbolic Model Checking. In Journal of
Artificial Intelligence Research (JAIR) (2003) 305–338

13. Harel, D., Kugler, H.: Synthesizing State-Based Object Systems from LSC Specifications.
International Journal of Foundations of Computer Science 13 (2002) 5–51

14. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis, Methods and Practical Use.
EACTS – Monographs on Theoretical Computer Science. Springer-Verlag (1992)

15. Jensen, K.: Coloured Petri Nets – Basic Concepts, Analysis Methods and Practical Use.
Volume 2. Springer-Verlag (1997)

16. Weiss, G., ed.: Multiagent Systems – A Modern Approach to Distributed Artificial Intelli-
gence. MIT Press (1999)

17. Jensen, K., al, e.: Design/CPN 4.0. Meta Software Corporation and Department of Computer
Science, University of Aarhus, Denmark. (1999) On-line version:
http://www.daimi.aau.dk/designCPN/.

18. Christensen, S., Mortensen, K.H.: Design/CPN ASK-CTL Manual, University of Aarhus.
0.9 edn. (1996)

19. Costa, E.B., Lopes, M.A., Ferneda, E.: MATHEMA: A Learning Environment Based on a
Multi-Agent Architecture. In Wainer, J., Carvalho, A., eds.: Proceedings of the 12th Brazil-
ian Symposium on Artificial Intelligence. Volume 991 of Lecture Notes in Artificial Intelli-
gence., Campinas, Brasil, Springer-Verlag (1995) 141–150

20. Costa, E., Almeida, H.O., Lima, E.F.A., Filho, R.R.G.N., Silva, K.S., Assunção, F.M.: A Co-
operative Intelligent Tutoring System: The case of Musical Harmony domain. In Coello, C.,
Albornoz, A., Sucar, L., Battistuti, O., eds.: Proceedings of 2nd Mexican International Con-
ference on Artificial Intelligence – MICAI’02. Volume 2313 of Lecture Notes in Artificial
Intelligence., Mérida, Yucatán, México, Springer Verlag (2002) 367–376

21. Silva, L.D., Almeida, H.O., Perkusich, A., Costa, E.B.: Modelling and Analysis of a Multi-
Agent Intellgent Tutoring System Based on Coloured Petri Nets. In: 1st ACIS International
Conference on Software Engineering Research and Applications (SERA’03). Volume 1., San
Francisco, EUA, Mt. Pleasant: International Association for Computer and Information Sci-
ences (ACIS) (2003) 276–281

22. Weyns, D., Holvoet, T.: A Coloured Petri Net for a Multi Agent Application. In Moldt, D.,
ed.: Proc. of the Second International Workshop on Modelling of Objects, Components, and
Agents (MOCA’02), Aarhus, Denmark (2002) 121–140

23. Fiorino, H., Tessier, C.: Agent Cooperation: a Petri Net based Model. In: Proceedings of
ICMAS’98. (1998) 4–7

24. Miranda, M., Perkusich, A.: Modeling and Analysis of a Multi-Agent System Using Col-
ored Petri Nets. In: Proc. of Workshop on Applications of Petri Nets to Intelligent System
Development, Williamsburg, Virginia, USA (1999) 87–99

25. Moldt, D., Wienberg, F.: Multi-Agent-Systems based on Coloured Petri Nets. In: Proceed-
ings of the 18th International Conference on Application and Theory of Petri Nets, Springer-
Verlag (1997) 82–101

26. Seghrouchni, A.E.F., Haddad, S.: A recursive model for distributed planning. In Lesser, V.,
ed.: Proceedings of the First International Conference on Multi–Agent Systems, MIT Press
(1995)

27. Jensen, R., Veloso, M.: OBDD-based Universal Planning for Multiple Synchronized Agents
in Non-Deterministic Domains. In: Proceedings of the Fifth International Conference on
Artificial Intelligence Planning Systems, Breckenridge, CO (2000) 167–176

28. Xu, D., Volz, R., Ioerger, T., Yen, J.: Modeling and Verifying Multi-agent Behaviors using
Predicate/Transition Nets. In: Proceedings of the 14th international conference on Software
engineering and knowledge engineering, ACM Press (2002) 193–200

29. Xu, H., Shatz, S.M.: A Framework for Modeling Agent-Oriented Software. In: Proceedings
of the 21st International Conference on Distributed Computing Systems (ICDCS). (2001)

nabil.hameurlain@univ-pau.fr
http://www.univ-pau.fr/~hameur

sibertin@univ-tlse1.fr

•
•

•

•

•

•

−

−

price
t2 t3

to_announce to_bid
to_bid

t3 bid t3
price

t4 to_attribute
bid

t4 OK
t5 to_give t6 rep_bid

t6 Ok
to_give t7 to_pay

price

portfolio t1
to_announce

to_announce
t6 to_bid t2

Res
attribute

to_attribute
to_attribute t4 to_pay

to_pay t5
to_give RES
announce

portfolio an-
nounce

•

•

to bid to pay
t6 t4

•

•

•

•

•

−
−
−

−

t3 to_bid

• to_announce
to_bid

• to_attribute
to_announce to_bid

• to_give to_pay

• to_attribute to_pay
• to_pay to_give

•

bid attribute

EF(Vendor.bid & Vendor.attribute)
FALSE announce at-

tribute
•

price bid
to_announce to_bid

EF(Vendor.price & Buyer.bid)

choren@de9.ime.eb.br

lucena@inf.puc-rio.br

claudio.bartolini@hp.com

chris.priest@hp.com

nrj@ecs.soton.ac.uk

−

−

(negotiation (id Negotiation-Id))

(negotiation
 (id Negotiation-Id)
 (negotiation-parameter Value))

(negotiation
 (id auction-37)
 (seller-proposal Alice-37)
 (bid-increment 5)
 (termination-window 30min)
 (currently-highest-bid 0))

(participant
 (id Participant-Id)

 (negotiation-id Negotiation-Id))

(participant
 (id Participant-Id)
 (negotiation-id Negotiation-Id)
 (participant-attribute-name, Value))

(participant
 (id Bob)
 (negotiation-id auction37)
 (creditLimit 10000))

(submission-time 01/10/01:18:37
(proposal-id Proposal-Id))

(valid-proposal
 (proposal-id Proposal-Id))

(active-proposal
 (proposal-id Proposal-Id))

Car ⊆ Product ∩
∃ hasModel.Model ∩
∃ hasMake.Make

Model = {Punto, TT, S80}
Make = {Ford, Audi, Volvo}

Template1 = Template ∩ Sale ∩
 ∀item.Car ∩
 ∀unitPrice.above2000 ∩
 ∀quantity.1 ∩
 ∀isComposedOf.(Delivery ∩ ∀date.before20041231)

Proposal1 = Proposal ∩
 ∀seller.Alice ∩
 ∀item.(Car ∩ ∀hasMake.Fiat ∩ ∀hasModel.Punto) ∩
 ∀unitPrice.above3000 ∩ ∀quantity.1 ∩
∀isComposedOf.(Delivery ∩
∀date.between20041201and200412131))

validT(P) ⇔ P ⊆ T

compatible(D1,…,Dn) ⇔ ¬(D1 ∩ … ∩ Dn ⊆ ⊥)

Φ

potentialAgreements(Φ) = {(Pi, Pj)|compatible(Pi, Pj)
∧ i≠j}

• satisfiability (¬(X ⊆ ⊥))
• subsumption (X ⊆ Y).

(defrule display-rule ; declare the rule name
 (negotiation
 (...)) ; extract and process relevant parame-
ters

 from the DL description in the payload3
 => (assert
 (information-digest (...)))
 ; assert processed parameters to be published in
 the info digest

(defrule visibility-rule
 (valid-proposal
 (...)) ; extract and process relevant parame-
ters
 (test (...)) ; test the required condition
 => (assert (visible-proposal (...)))
 ; if valid, assert that the proposal is visible

(defrule termination-rule
 (...) ; extract and process relevant parameters
 (test (...)) ; test the termination condition
 => (assert (terminate <negotiation-id>)))
 ; if termination condition is met, assert nego-
tiation is terminated

(defrule <rule-name>
 (proposal (proposal-id ?Proposal-id)
 (...)) ; extract any other relevant parameters
 (test not(...)) ; REQUIRED CONDITION IN A NEGATED
 FORM!!!
 => (assert (failed <rule-name> ?proposal-id)))
 ; if the condition is NOT met, assert the proposal
 is NOT valid

(proposal
 (proposal-id Alice-37)
 ;ID is generated by the Negotiation Host
 (submitter Alice)
 (role Seller) ; Alice wishes to sell...
 (automobile
 (make FIAT) ;.. a FIAT Punto....
 (model Punto))
 (price ?P\&:(>= 3000 ?P))) ;... reservation price: 3000.

(test (equal ?Role buyer)
 (exists (active-proposal (...) (role seller)))

(test (> ?Price (+ ?Currently-Highest-Price ?bid-
increment)))

(test FALSE)

(defrule visibility-rule
 (active-proposal(proposal-id ?PID)(role seller))
 (test(TRUE))
 => (assert
 (visible-proposal
 (proposal-id
 (value ?PID)
 (visibility all))
 (price
 (value ?Price)
 (visibility none))
 (...)))

(defrule display-rule
 (negotiation
 (...)
 (currently-highest-bid ?CHB))
 => (assert
 (information-digest
 (currently-highest-bid ?CHB)))

(test (> ?Current-Time (+?Active-Proposal-Time ?Termi-
nation-Window))

(defrule agreement-formation-rule
 (active-proposal
 (proposal-id ?B-PID) (submitter ?BUYER)
 (role buyer) (price ?PRICE))
 (active-proposal
 (proposal-id ?S-PID) (submitter ?SELLER)
 (role seller) (price ?RES-PRICE))
 (test
 (> PRICE RES-PRICE))
 => (assert
 (agreement
 (buyer ?BUYER) (seller ?SELLER)
 (price ?PRICE))))

(test (> ?Price ?Currently-Lowest-Offer))

(test (> ?Price ?Currently-Highest-Bid))

(test (> ?Current-Time ?End-Time))

(defrule agreement-formation-rule
 (active-proposal
 (proposal-id ?Seller-PID)
 (price ?Seller-price))
 (active-proposal
 (proposal-id ?Buyer-PID)
 (price ?Buyer-price))
 (currently-highest-bid ?Buyer-Price)
 (currently-highest-ask ?Seller-Price)
 => (assert
 (agreement
 (proposals
 (?Seller-PID ?Buyer-PID))
 (price (= (/ 2 (+ (?BP ?SP))…)))

Efficient Agent Communication
in Multi-agent Systems

Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

Department of Computer Science
University of Illinois at Urbana-Champaign,

Urbana IL 61801, USA
{mjang,amrmomen,agha}@uiuc.edu

Abstract. In open multi-agent systems, agents are mobile and may
leave or enter the system. This dynamicity results in two closely re-
lated agent communication problems, namely, efficient message passing
and service agent discovery. This paper describes how these problems are
addressed in the Actor Architecture (AA). Agents in AA obey the oper-
ational semantics of actors, and the architecture is designed to support
large-scale open multi-agent systems. Efficient message passing is facil-
itated by the use of dynamic names: a part of the mobile agent name
is a function of the platform that currently hosts the agent. To facil-
itate service agent discovery, middle agents support application agent-
oriented matchmaking and brokering services. The middle agents may
accept search objects to enable customization of searches; this reduces
communication overhead in discovering service agents when the matching
criteria are complex. The use of mobile search objects creates a security
threat, as codes developed by different groups may be moved to the same
middle agent. This threat is mitigated by restricting which operations a
migrated object is allowed to perform. We describes an empirical eval-
uation of these ideas using a large scale multi-agent UAV (Unmanned
Aerial Vehicle) simulation that was developed using AA.

1 Introduction

In open agent systems, new agents may be created and agents may move from
one computer node to another. With the growth of computational power and
network bandwidth, large-scale open agent systems are a promising technology
to support coordinated computing. For example, agent mobility can facilitate
efficient collaboration with agents on a particular node. A number of multi-agent
systems, such as EMAF [3], JADE [4], InfoSleuth [16], and OAA [8], support
open agent systems. However, before the vision of scalable open agent systems
can be realized, two closely related problems must be addressed:

– Message Passing Problem: In mobile agent systems, efficiently sending mes-
sages to an agent is not simple because they move continuously from one
agent platform to another. For example, the original agent platform on which
an agent is created should manage the location information about the agent.

R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 236–253, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Efficient Agent Communication in Multi-agent Systems 237

However, doing so not only increases the message passing overhead, but it
slows down the agent’s migration: before migrating, the agent’s current host
platform must inform the the original platform of the move and may wait
for an acknowledgement before enabling the agent.

– Service Agent Discovery Problem: In an open agent system, the mail ad-
dresses or names of all agents are not globally known. Thus an agent may
not have the addresses of other agents with whom it needs to communi-
cate. To address this difficulty, middle agent services, such as brokering and
matchmaking services [25], need to be supported. However, current middle
agent systems suffer from two problems: lack of expressiveness–not all search
queries can be expressed using the middle agent supported primitives; and
incomplete information–a middle agent does not possess the necessary in-
formation to answer a user query.

We address the message passing problem for mobile agents in part by provid-
ing a richer name structure: the names of agents include information about their
current location. When an agent moves, the location information in its name is
updated by the platform that currently hosts the agent. When the new name
is transmitted, the location information is used by other platforms to find the
current location of that agent if it is the receiver of a message. We address the
service agent discovery problem in large-scale open agent systems by allowing
client agents to send search objects to be executed in the middle agent address
space. By allowing agents to send their own search algorithms, this mitigates
both the lack of expressiveness and incomplete information.

We have implemented these ideas in a Java-based agent system called the
Actor Architecture (or AA). AA supports the actor semantics for agents: each
agent is an autonomous object with a unique name (address), message pass-
ing between agents is asynchronous, new agents may be dynamically created,
and agent names may be communicated [1]. AA has been designed with a
modular, extensible, and application-independent structure. While AA is be-
ing used to develop tools to facilitate large-scale simulations, it may also be
used for other large-scale open agent applications. The primary features of AA
are: a light-weight implementation of agents, reduced communication overhead
between agents, and improved expressiveness of middle agents.

This paper is organized as follows. Section 2 introduces the overall structure
and functions of AA as well as the agent life cycle model in AA. Section 3
explains our solutions to reduce the message passing overhead for mobile agents
in AA, while Section 4 shows how the search object of AA extends the basic
middle agent model. Section 5 descries the experimental setting and presents an
evaluation of our approaches. Related work is explained in Section 6, and finally,
Section 7 concludes this paper with future research directions.

2 The Actor Architecture

AA provides a light-weight implementation of agents as active objects or ac-
tors [1]. Agents in AA are implemented as threads instead of processes. They

238 Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

use object-based messages instead of string-based messages, and hence, they do
not need to parse or interpret a given string message, and may use the type
information of each field in a delivered message. The actor model provides the
infrastructure for a variety of agent systems; actors are social and reactive, but
they are not explicitly required to be “autonomous” in the sense of being proac-
tive [28]. However, autonomous actors may be implemented in AA, and many
of our experimental studies require proactive actors. Although the term agent
has been used to mean proactive actors, for our purposes the distinction is not
critical. In this paper, we use the terms ‘agent’ and ‘actor’ as synonyms.

The Actor Architecture consists of two main components:

– AA platforms which provide the system environment in which actors exist
and interact with other actors. In order to execute actors, each computer
node must have one AA platform. AA platforms provide actor state man-
agement, actor communication, actor migration, and middle agent services.

– Actor library which is a set of APIs that facilitate the development of agents
on the AA platforms by providing the user with a high level abstraction of
service primitives. At execution time, the actor library works as the interface
between actors and their respective AA platforms.

An AA platform consists of eight components (see Fig. 1): Message Manager,
Transport Manager, Transport Sender, Transport Receiver, Delayed Message
Manager, Actor Manager, Actor Migration Manager, and ATSpace.

AA Platform

AA Platform

Message Manager

Actor Manager Actor Migration Manager

Delayed Message Manager

Transport Receiver

Transport Receiver Transport Sender

Transport Sender

ATSpace

Transport Manager

Transport Manager

Actor

Fig. 1. Architecture of an AA Platform.

Efficient Agent Communication in Multi-agent Systems 239

The Message Manager handles message passing between actors. Every mes-
sage passes through at least one Message Manager. If the receiver actor of a
message exists on the same AA platform, the Message Manager of that platform
directly delivers the message to the receiver actor. However, if the receiver actor
is not on the same AA platform, this Message Manager delivers the message to
the Message Manager of the platform where the receiver currently resides, and
finally that Message Manager delivers the message to the receiver actor. The
Transport Manager maintains a public port for message passing between differ-
ent AA platforms. When a sender actor sends a message to another actor on a
different AA platform, the Transport Sender residing on the same platform as
the sender receives the message from the Message Manager of that platform and
delivers it to the Transport Receiver on the AA platform of the receiver. If there
is no built-in connection between these two AA platforms, the Transport Sender
contacts the Transport Manager of the AA platform of the receiver actor to open
a connection so that the Transport Manager can create a Transport Receiver for
the new connection. Finally, the Transport Receiver receives the message and
delivers it to the Message Manager on the same platform.

The Delayed Message Manager temporarily holds messages for mobile actors
while they are moving from one AA platform to another. The Actor Manager of
an AA platform manages the state of actors that are currently executing as well
as the locations of mobile actors created on this platform. The Actor Migration
Manager manages actor migration.

The ATSpace provides middle agent services, such as matchmaking and bro-
kering services. Unlike other system components, an ATSpace is implemented
as an actor. Therefore, any actor may create an ATSpace, and hence, an AA
platform may have more than one ATSpaces. The ATSpace created by an AA
platform is called the default ATSpace of the platform, and all actors can obtain
the names of default ATSpaces. Once an actor has the name of an ATSpace,
the actor may send the ATSpace messages in order to use its services for finding
other actors that match a given criteria.

In AA, actors are implemented as active objects and are executed as threads;
actors on an AA platform are executed with that AA platform as part of one
process. Each actor has one actor life cycle state on one AA platform at any
time (see Fig. 2). When an actor exists on its original AA platform, its state
information appears within only its original AA platform. However, the state
of an actor migrated from its original AA platform appears both on its original
AA platform and on its current AA platform. When an actor is ready to process
a message its state becomes Active and stays so while the actor is processing
the message. When an actor initiates migration, its state is changed to Transit.
Once the migration ends and the actor restarts, its state becomes Active on
the new AA platform and Remote on the original AA platform. Following a user
request, an actor in the Active state may move to the Suspended state.

In contrast to other agent life cycle models (e.g. [10, 18]), the AA life cycle
model uses the Remote state to indicate that an actor that was created on the
current AA platform is working on another AA platform.

240 Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

Move Start

Suspend

Move Start

Resume
Destroy

Create or
Execute

Unknown

Execute

Remote

Transit Active

Suspended

End
Move

Fig. 2. Actor Life Cycle Model.

3 Optimized Message Delivery

We describe the message delivery mechanisms used to support inter-actor com-
munications. Specifically, AA uses two approaches to reduce the communication
overhead for mobile actors that are not on their original AA platforms: location-
based message passing and delayed message passing.

3.1 Location-Based Message Passing

Before an actor can send messages to other actors, it should know the names
of the intended receiver actors. In AA, each actor has its own unique name
called UAN (Universal Actor Name). The UAN of an actor includes the location
information and the unique identification number of the actor as follows:

uan://128.174.245.49:37

From the above name, we can infer that the actor exists on the host whose IP
address is 128.174.245.49, and that the actor is distinguished from other actors
on the same platform with its unique identification number 37.

When the Message Manager of a sender actor receives a message whose re-
ceiver actor has the above name, it checks whether the receiver actor exists
on the same AA platform. If they are on the same AA platform, the Message
Manager finds the receiver actor on this AA platform and directly delivers the
message. Otherwise, the Message Manager of the sender actor delivers the mes-
sage to the Message Manager of the receiver actor. In order to find the AA
platform where the Message Manager of the receiver actor exists, the location
information 128.174.245.49 in the UAN of the receiver actor is used. When the
Message Manager on the AA platform with IP address 128.174.245.49 receives
the message, it finds the receiver actor there and delivers the message.

The above actor naming and message delivery scheme works correctly when
all actors are on their original AA platforms. However, because an actor may

Efficient Agent Communication in Multi-agent Systems 241

migrate from one AA platform to another, we extend the basic behavior of the
Message Manager with a forwarding service: when a Message Manager receives
a message for an actor that has migrated, it delivers the message to the current
AA platform of the mobile actor. To facilitate this service, each AA platform
maintains the current locations of actors that were created on it, and updates
the location information of actors that have come from other AA platforms on
their original AA platforms.

The problem with using only universal actor names for message delivery is
that every message for a migrated actor still has to pass through the original AA
platform in which the actor was created (Fig. 3.a). This kind of blind indirection
may happen even in situations where the receiver actor is currently on an AA
platform that is near the AA platform of the sender actor. Since message passing
between actor platforms is relatively expensive, AA uses Location-based Actor
Name (LAN) for mobile actors in order to generally eliminate the need for
this kind of indirection. Specifically, the LAN of an actor consists of its current
location and its UAN as follows:

lan://128.174.244.147//128.174.245.49:37

The current location of a mobile actor is set by an AA platform when the
actor arrives on the AA platform. If the current location is the same as the
location where an actor was created, the LAN of the actor does not have any
special information beyond its UAN.

Under the location-based message passing scheme, when the Message Man-
ager of a sender actor receives a message for a remote actor, it extracts the
current location of the receiver actor from its LAN and delivers the message to
the AA platform where the receiver actor exists. The rest of the procedure for
message passing is similar to that in the UAN-based message passing scheme.
Fig. 3.b shows how the location-based message passing scheme works. Actor one
with ual://C//A:15 sends its first message to actor two through the original
AA platform of actor two because actor one does not know the location of ac-
tor two. This message includes the location information about actor one as the
sender actor. Therefore, when actor two receives the message, it knows the loca-
tion of actor one, and it can now directly send a message to actor one. Similarly,
when actor one receives a message from actor two, it learns the location of actor
two. Finally, the two actors can directly communicate with each other without
mediation by their original AA platforms.

In order to use the LAN address scheme, the location information in a LAN
should be recent. However, mobile actors may move repeatedly, and a sender
actor may have old LANs of mobile actors. Thus a message for a mobile actor
may be delivered to its previous AA platform from where the actor left. This
problem is addressed by having the old AA platform deliver the message to the
original AA platform where the actor was created; the original platform always
manages the current addresses of its actors. When the receiver actor receives the
message delivered through its original AA platform, the actor may send a null

242 Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

b. Location−based Message Passing

Platform A Platform B Platform C

a. UAN−based Message Passing

Platform A Platform B Platform C

Actor one (uan://A:15)
migrates to Platform C.

Agent two (uan://A:16)
migrates to Platform B.

Agent one sends
a message to actor two.

Agent two replies to
actor one.

a message to actor one.
Agent two sends

Agent one replies to
actor two.

Actor one (uan://A:15)
migrates to Platform C.

Agent two (uan://A:16)
migrates to Platform B.

Agent one sends
a message to actor two.

Agent two replies to
actor one.

a message to actor one.
Agent two sends

Agent one replies to
actor two.

Fig. 3. Message Passing between Mobile Actors.

Efficient Agent Communication in Multi-agent Systems 243

message with its LAN to update its location at the sender actor. Therefore, the
sender actor can use the updated information for subsequent messages.

3.2 Delayed Message Passing

While a mobile actor is moving from one AA platform to another, the current AA
platform of the actor is not well defined. In AA, because the location information
of a mobile actor is updated after it finishes migration, its original AA platform
thinks the actor still exists on its old AA platform during migration. Therefore,
when the Message Manager of the original AA platform receives a message for
a mobile actor, it sends the message to the Message Manager of the old AA
platform thinking that it is still there. After the Message Manager of the old AA
platform receives the message, it forwards the message to the Message Manager
of the original AA platform. Thus, a message is continuously passed between
these two AA platforms until the mobile actor updates the Actor Manager of its
original AA platform with its new location.

In order to avoid unnecessary message thrashing, we use the Delayed Message
Manager in each AA platform. After the actor starts its migration, the Actor
Manager of the old AA platform changes its state to be Transit. From this
moment, the Delayed Message Manager of this platform holds messages for this
mobile actor until the actor reports that its migration has ended. After the mobile
actor finishes its migration, its new AA platform sends its old AA platform and
its original AA platform a message to inform them that the migration process
has ended. When these two AA platforms receive this message, the original AA
platform changes the state of the mobile actor from Transit to Remote while
the old AA platform removes all information about the mobile actor, and the
Delayed Message Manager of the old AA platform forwards the delayed messages
to the Message Manager of the new AA platform of the actor.

4 Active Brokering Service

An ATSpace supports active brokering services by allowing agents to send their
own search algorithms to be executed in the ATSpace address space [14]. We
compare this service to current middle agent services.

Many middle agents are based on attribute-based communication. Service
agents register themselves with the middle agent by sending a tuple whose at-
tributes describe the service they advertise. To find the desired service agents, a
client agent supplies a tuple template with constraints on attributes. The middle
agent then tries to find service agents whose registered attributes match the sup-
plied constraints. Systems vary more or less according to the types of constraints
(primitives) they support. Typically, a middle agent provides exact matching or
regular expression matching [2, 11, 17]. As we mentioned earlier, this solution
suffers from a lack of expressiveness and incomplete information.

For example, consider a middle agent with information about seller agents.
Each service agent (seller) advertises itself with the following attributes <actor

244 Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

name, seller city, product name, product price>. A client agent with the
following query is stuck:

Q1: What are the best two (in terms of price) sellers that offer computers and
whose locations are roughly within 50 miles of me?

Considering the current tuple space technology, the operator “best two” is
clearly not supported (expressiveness problem). Morever, the tuple space does
not include distance information between cities (incomplete information prob-
lem). Faced with these difficulties, a user with this complex query Q1 has to
transform it into a simpler one that is accepted by the middle agent which re-
trieves a superset of the data to be retrieved by Q1. In our example, a simpler
query could be:

Q2: Find all tuples about sellers that sell computers.

An apparent disadvantage of the above approach is the movement of a large
amount of data from the middle agent space to the buyer agent, especially if Q2
is semantically distant from Q1. In order to reduce communication overhead,
ATSpace allows a sender agent to send its own search algorithm to find service
agents, and the algorithm is executed in the ATSpace. In our example, the buyer
agent would send a search object that would inspect tuples in the middle agent
and select the best two sellers that satisfy the buyer criteria.

4.1 Security Issues

Although active brokering services mitigate the limitations of middle agents, such
as brokers or matchmakers, they also introduce the following security problems
in ATSpaces:

– Data Integrity: A search object may not modify tuples owned by other actors.
– Denial of Service: A search object may not consume too much processing

time or space of an ATSpace, and a client actor may not repeatedly send
search objects to overload an ATSpace.

– Illegal Access: A search object may not carry out unauthorized accesses or
illegal operations.

We address the first problem by preventing the search object from modifying
tuple data of other actors. This is done by supplying methods of the search object
with a copy of the data in the ATSpace. However, when the number of tuples
in the ATSpace is large, this solution requires extra memory and computation
resources. Thus the ATSpace supports the option of delivering a shallow copy
of the original tuples to the search object at the risk of data being changed by
search objects as such scheme may compromise the data integrity.

To prevent malicious objects from exhausting the ATSpace computational
resource, we deploy user-level thread scheduling as depicted in Fig. 4. When
a search object arrives, the object is executed as a thread and its priority is

Efficient Agent Communication in Multi-agent Systems 245

job queues

priority

priority
high

priority

low

middle

Tuple Space Tuple Space Manager

ATSpace
Manager

ATSpace

tuple

tuple

tuple

obj.obj.

obj.obj.

obj.obj.

tuple

Fig. 4. Architecture of an ATSpace.

set to high. If the thread executes for a long time, its priority is continuously
downgraded. Moreover, if the running time of a search object exceeds a certain
limit, it may be destroyed by the tuple space manager.

To prevent unauthorized accesses, if the ATSpace is created with an access
key, then this key must accompany every message sent from client actors. In this
case, actors are allowed only to modify their own tuples. This prevents removal
or modification of tuples by unauthorized actors.

5 Experiments and Evaluation

The AA platforms and actors have been implemented in Java language to sup-
port operating system independent actor mobility. The Actor Architecture is
being used for large-scale UAV (Unmanned Aerial Vehicle) simulations. These
simulations investigate the effects of different collaborative behaviors among a
large number of micro UAVs during their surveillance missions over a large num-
ber of moving targets [15]. For our experiments, we have tested more than 1,000
actors on four computers: 500 micro UAVs, 500 targets, and other simulation
purpose actors are executed. The following two sections evaluate our solutions.

5.1 Optimized Message Delivery

According to our experiments, the location-based message passing scheme in AA
reduces the number of hops (over AA platforms) that a message for a mobile
actor goes through. Since an agent has the location information about its col-
laborating agents, the agent can carry this information when it moves from one
AA platform to another. With location-based message passing, the system is
more fault-tolerant; since messages for a mobile actor need not pass through the
original AA platform of the actor, the messages may be correctly delivered to
the actor even when the actor’s original AA platform is not working correctly.

246 Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

Moreover, delayed message passing removes unnecessary message thrashing
for moving agents. When delayed message passing is used, the old AA platform
of a mobile actor needs to manage its state information until the actor finishes
its migration, and the new platform of the mobile actor needs to report the
migration state of the actor to its old AA platforms. In our experiments, this
overhead is more than compensated; without delayed message passing the same
message may get delivered seven or eight times between the original AA platform
and the old AA platform while a mobile actor is moving. If a mobile actor takes
more time for its migration, this number may be even greater.

5.2 Active Brokering Service

The performance benefit of ATSpace can be measured by comparing its active
brokering services with the data retrieval services of a template-based general
middle agent supporting the same service along four different dimensions: the
number of messages, the total size of messages, the total size of memory space
on the client and middle agent AA platforms, and the computation time for the
whole operation. To analytically evaluate ATSpaces, we will use the scenario
mentioned in section 4 where a service requesting agent has a complex query
that is not supported by the template-based model.

First, with the template-based service, the number of messages is n+2 where
n is the number of service agents that satisfy a complex query. This is because the
service requesting agent has to first send a message to the middle agent to bring a
superset of its final result. This costs two messages: a service request message to
the middle agent (Service Requesttemplate) that contains Q2 and a reply mes-
sage that contains agent information satisfying Q2 (Service Replytemplate).
Finally, the service requesting agent sends n messages to the service agents that
match its original criteria. With the active brokering service, the total number
of messages is n+1. This is because the service requesting agent need not worry
about the complexity of his query and only sends a service request message
(Service RequestATSpace) to the ATSpace. This message contains the code
that represents its criteria along with the message that should be sent to the
agents which satisfy these criteria. The last n messages have the same explana-
tion as in the template-based service.

While the number of messages in the two approaches does not differ that
much, the total size of these messages may have a huge difference. In both
approaches, a set of n messages needs to be sent to the agents that satisfy the
final matching criteria. Therefore, the question of whether or not active brokering
services result in bandwidth saving depends on the relative size of the other
messages. Specifically the difference in bandwidth consumption (DBC) between
the template-based middle agent and the ATSpace is given by the following
equation:

DBC = [size(Service Requesttemplate) −
size(Service RequestATSpace)] +

size(Service Replytemplate)

Efficient Agent Communication in Multi-agent Systems 247

In general, since the service request message in active brokering services is
larger as it has the search object, the first component is negative. Therefore,
active brokering services will only result in a bandwidth saving if the increase in
the size of its service request message is smaller than the size of the service reply
message in the template-based service. This is likely to be true if the original
query (Q1) is complex such that turning it into a simpler one (Q2) to retrieve
a superset of the result would incur a great semantic loss and as such would
retrieve much extra agent information from the middle agent.

Third, the two approaches put a conflicting requirement on the amount of
space needed on both the client and middle agent machines. In the template-
based approach the client agent needs to provide extra space to store the tuples
returned by Q2. On the hand, the ATSpace needs to provide extra space to store
copies of tuples given to search objects. However, a compromise can be made
here as the creator of the ATSpace can choose to use the shallow copy of tuples.

Fourth, the difference in computation times of the whole operation in the two
approaches depends on two factors: the time for sending messages and the time
for evaluating queries on tuples. The tuples in the ATSpace are only inspected
once by the search object sent by the service requesting agent. However, in the
template-based middle agent, some tuples are inspected twice. First, in order
to evaluate Q2, the middle agent needs to inspect all the tuples that it has.
Second, these tuples that satisfy Q2 are sent back to the service requesting
agent to inspect them again and retain only those tuples that satisfy Q1. If Q1
is complex then Q2 will be semantically distant from Q1, which in turns has two
ramifications. First, the time to evaluate Q2 against all the tuples in the middle
agent is small relative to the time needed to evaluate the search object over them.
Second, most of the tuples on the middle agent would pass Q2 and be sent back
to be re-evaluated by the service requesting agent. This reevaluation has nearly
the same complexity as running the search object code. Thus we conclude that
when the original query is complex and external communication cost is high, the
active brokering service will result in time saving.

Apart from the above analytical evaluation, we have run a series of experi-
ments on the UAV simulation to substantiate our claims. (Interested readers may
refer to [13] for more details.) Fig. 5 demonstrates the saving in computational
time of an ATSpace compared to a template-based middle agent that provides
data retrieval services with the same semantic. Fig. 6 shows the wall clock time
ratio of a template-based middle agent to an ATSpace. In these experiments,
UAVs use either active brokering services or data retrieval services to find their
neighboring UAVs. In both cases, the middle agent includes information about
locations of UAVs and targets. In case of the active brokering service, UAVs send
search objects to an ATSpace while the UAVs using data retrieval service send
tuple templates. The simulation time for each run is around 35 minutes, and the
wall clock time depends on the number of agents. When the number of agents
is small, the difference between the two approaches is not significant. However,
as the number of agents is increased, the difference becomes large.

248 Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

200 400 600 800 1000
0

100

200

300

400

500

600

Number of Agents

W
al

l C
lo

ck
 T

im
e

(M
in

)

ATSpace
Template−based Middle Agent

Fig. 5. Wall Clock Time (Min) for
ATSpace and Template-based Middle
Agent.

200 400 600 800 1000
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

Number of Agents

W
al

l C
lo

ck
 T

im
e

R
at

io

Fig. 6. Wall Clock Time Ratio
of Template-based Middle Agent-to-
ATSpace.

Fig. 7 depicts the number of messages required in both cases. The number
of messages in the two approaches is quite similar but the difference is slightly
increased according to the number of agents. Note that the messages increase
almost linearly with the number of agents, and that the difference in the number
of messages for a template-based middle agent and an ATSpace is small; it is in
fact less than 0.01% in our simulations.

200 400 600 800 1000
0

2

4

6

8

10

12

14

16

18

20

22

Number of Agents

N
um

be
r

of
 M

es
sa

ge
s

(M
)

ATSpace
Template−based Middle Agent

Fig. 7. The Number of Messages for ATSpace and Template-based Middle Agent.

Fig. 8 shows the total message size required in the two approaches, and Fig. 9
shows the total message size ratio. When the search queries are complex, the total
message size in the ATSpace approach is much less than that in the template-
based middle agent approach. In our UAV simulation, search queries are rather
complex and require heavy mathematical calculations, and hence, the ATSpace
approach results in a considerable bandwidth saving. It is also interesting to
note the relationship between the whole operation time (as shown in Fig. 5) and
the bandwidth saving (as shown in Fig. 8). This relationship supports our claim

Efficient Agent Communication in Multi-agent Systems 249

200 400 600 800 1000
0

5

10

15

20

25

30

35

Number of Agents

T
ot

al
 S

iz
e

of
 M

es
sa

ge
s

(G
B

yt
es

)

ATSpace
Template−based Middle Agent

Fig. 8. Total Message Size (GBytes)
for ATSpace and Template-based
Middle Agent.

200 400 600 800 1000
1.2

1.3

1.4

1.5

1.6

1.7

1.8

Number of Agents

T
ot

al
 S

iz
e

of
 M

es
sa

ge
 R

at
io

Fig. 9. Total Message Size Ratio
for Template-based Middle Agent-
to-ATSpace.

that the saving in the total operation time by the ATSpace is largely due to its
superiority in efficiently utilizing the bandwidth.

6 Related Work

The basic mechanism of location-based message passing is similar to the mes-
sage passing in Mobile IP [20], although its application domain is different. The
original and current AA platforms of a mobile actor correspond to the home and
foreign agents of a mobile client in Mobile IP, and the UAN and LAN of a mo-
bile actor are similar to the home address and care-of address of a mobile client
in Mobile IP. However, while the sender node in Mobile IP manages a binding
cache to map home addresses to care-of addresses, the sender AA platform in
AA does not have a mapping table. Another difference is that in mobile IP, the
home agent communicates with the sender node to update the binding cache.
However, in AA this update can be done by the agent itself when it sends a
message that contains its address.

The LAN (Location-based Actor Name) may also be compared to UAL (Uni-
versal Actor Locator) in SALSA [27]. In SALSA, UAL represents the location of
an actor. However, SALSA uses a middle agent called Universal Actor Naming
Server to locate the receiver actor. SALSA’s approach requires the receiver ac-
tor to register its location at a certain middle agent, and the middle agent must
manage the mapping table.

The ATSpace approach, which is based on the tuple space model, is related
to Linda [6]. In the Linda model, processes communicate with other processes
through a shared common space called a blackboard or a tuple space without
considering references or names of other processes [6, 21]. This approach was used
in several agent frameworks, for example EMAF [3] and OAA [8]. However, these
models support only primitive features for pattern-based communication among
processes or agents. From the middle agent perspective, Directory Facilitator in

250 Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

the FIPA platform [10], ActorSpace [2], and Broker Agent in InfoSleuth [16] are
related to our research. However, these systems do not support customizable
matching algorithms.

From the expressiveness perspective, some work has been done to extend
the matching capability of the basic tuple space model. Berlinda [26] allows a
concrete entry class to extend the matching function, and TS [12] uses policy
closures in a Scheme-like language to customize the behavior of tuple spaces.
However, these approaches do not allow the matching function to be changed
during execution time. At the other hand, OpenSpaces [9] provides a mechanism
to change matching polices during the execution time. OpenSpaces groups en-
tries in its space into classes and allows each class to have its individual matching
algorithm. A manager for each class of entries can change the matching algo-
rithm during execution time. All agents that use entries under a given class are
affected by any change to its matching algorithm. This is in contrast to the
ATSpace where each agent can supply its own matching algorithm without af-
fecting other agents. Another difference between OpenSpaces and ATSpaces is
that the former requires a registration step before putting the new matching
algorithm into action, but ATSpace has no such requirement.

Object Space [22] allows distributed applications implemented in the C++
programming language to use a matching function in its template. This matching
function is used to check whether an object tuple in the space is matched with the
tuple template given in rd and in operators. However, in the ATSpace the client
agent supplied search objects can have a global overview of the tuples stored
in the shared space and hence can support global search behavior rather than
the one tuple based matching behavior supported in Object Space. For example,
using the ATSpace a client agent can find the best ten service agents according
to its criteria whereas this behavior cannot be achieved in Object Space.

TuCSoN [19] and MARS [5] provide programmable coordination mechanisms
for agents through Linda-like tuple spaces to extend the expressive power of tu-
ple spaces. However, they differ in the way they approach the expressiveness
problem; while TuCSoN and MARS use reactive tuples to extend the expres-
sive power of tuple spaces, the ATSpace uses search objects to support search
algorithms defined by client agents. A reactive tuple handles a certain type of
tuples and affects various clients, whereas a search object handles various types
of tuples and affects only its creator agent. Therefore, while TuCSoN and MARS
extend the general search ability of middle agents, ATSpace supports application
agent-oriented searching on middle agents.

Mobile Co-ordination [23] allows agents to move a set of multiple tuple space
access primitives to a tuple space for fault tolerance. In Jada [7], one primitive
may use multiple matching templates. In ObjectPlaces [24], dynamic objects are
used to change their state whenever corresponding objecplace operations are
being called. Although these approaches improve the searching ability of tuple
spaces with a set of search templates or dynamic objects, ATSpace provides
more flexibility to application agents with their own search code.

Efficient Agent Communication in Multi-agent Systems 251

7 Conclusion and Future Work

In this papers we addressed two closely related agent communication issues: effi-
cient message delivery and service agent discovery. Efficient message delivery has
been addressed using two techniques. First, the agent naming scheme has been
extended to include the location information of mobile agents. Second, messages
whose destination agent is moving are postponed by the Delayed Message Man-
ager until the agent finishes its migration. For efficient service agent discovery,
we have addressed the ATSpace, Active Tuple Space. By allowing application
agents to send their customized search algorithms to the ATSpace, application
agents may efficiently find service agents. We have synthesized our solutions to
the mobile agent addressing and service agent discovery problems in a multi-
agent framework.

The long term goal of our research is to build an environment that allows for
experimental study of various issues that pertains to message passing and ser-
vice agent discovery in open multi-agent systems and provide a principled way
of studying possible tensions that arise when trying to simultaneously optimize
each service. Other future directions include the followings: for efficient message
passing, we plan to investigate various trade-offs in using different message pass-
ing schemes for different situations. We also plan to extend the Delayed Message
Manager to support mobile agents who are contiguously moving between nodes.
For service agent discovery, we plan to elaborate on our solutions to the security
issues introduced with active brokering services.

Acknowledgements

The authors would like to thank the anonymous reviewers and Naqeeb Abbasi
for their helpful comments and suggestions. This research is sponsored by the
Defense Advanced Research Projects Agency under contract number F30602-00-
2-0586.

References

1. G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, 1986.

2. G. Agha and C.J. Callsen. ActorSpaces: An Open Distributed Programming
Paradigm. In Proceedings of the 4th ACM Symposium on Principles and Prac-
tice of Parallel Programming, pages 23–32, May 1993.

3. S. Baeg, S. Park, J. Choi, M. Jang, and Y. Lim. Cooperation in Multiagent
Systems. In Intelligent Computer Communications (ICC ’95), pages 1–12, Cluj-
Napoca, Romania, June 1995.

4. F. Bellifemine, A. Poggi, and G. Rimassa. JADE - A FIPA-compliant Agent
Framework. In Proceedings of Practical Application of Intelligent Agents and Multi-
Agents (PAAM ’99), pages 97–108, London, UK, April 1999.

5. G. Cabri, L. Leonardi, and F. Zambonelli. MARS: a Programmable Coordination
Architecture for Mobile Agents. IEEE Computing, 4(4):26–35, 2000.

252 Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

6. N. Carreiro and D. Gelernter. Linda in Context. Communications of the ACM,
32(4):444–458, 1989.

7. P. Ciancarini and D. Rossi. Coordinating Java Agents over the WWW. World
Wide Web, 1(2):87–99, 1998.

8. P.R. Cohen, A.J. Cheyer, M. Wang, and S. Baeg. An Open Agent Architecture.
In AAAI Spring Symposium, pages 1–8, March 1994.

9. S. Ducasse, T. Hofmann, and O. Nierstrasz. OpenSpaces: An Object-Oriented
Framework for Reconfigurable Coordination Spaces. In A. Porto and G.C. Roman,
editors, Coordination Languages and Models, LNCS 1906, pages 1–19, Limassol,
Cyprus, September 2000.

10. Foundation for Intelligent Physical Agents. SC00023J: FIPA Agent Management
Specification, December 2002. http://www.fipa.org/specs/fipa00023/.

11. N. Jacobs and R. Shea. The Role of Java in InfoSleuth: Agent-based Exploita-
tion of Heterogeneous Information Resources. In Proceedings of Intranet-96 Java
Developers Conference, April 1996.

12. S. Jagannathan. Customization of First-Class Tuple-Spaces in a Higher-Order Lan-
guage. In Proceedings of the Conference on Parallel Architectures and Languages
- Vol. 2, LNCS 506, pages 254–276. Springer-Verlag, 1991.

13. M. Jang, A. Ahmed, and G. Agha. A Flexible Coordination Framework for
Application-Oriented Matchmaking and Brokering Services. Technical Report
UIUCDCS-R-2004-2430, Department of Computer Science, University of Illinois
at Urbana-Champaign, 2004.

14. M. Jang, A. Abdel Momen, and G. Agha. ATSpace: A Middle Agent to Support
Application-Oriented Matchmaking and Brokering Services. In IEEE/WIC/ACM
IAT(Intelligent Agent Technology)-2004, pages 393–396, Beijing, China, September
20-24 2004.

15. M. Jang, S. Reddy, P. Tosic, L. Chen, and G. Agha. An Actor-based Simulation
for Studying UAV Coordination. In 15th European Simulation Symposium (ESS
2003), pages 593–601, Delft, The Netherlnds, October 26-29 2003.

16. R.J. Bayardo Jr., W. Bohrer, R. Brice, A. Cichocki, J. Fowler, A. Helal,
V. Kashyap, T. Ksiezyk, G. Martin, M. Nodine, M. Rashid, M. Rusinkiewicz,
R. Shea, C. Unnikrishnan, A. Unruh, and D. Woelk. InfoSleuth: Agent-Based
Semantic Integration of Information in Open and Dynamic Environments. ACM
SIGMOD Record, 26(2):195–206, June 1997.

17. D.L. Martin, H. Oohama, D. Moran, and A. Cheyer. Information Brokering in
an Agent Architecture. In Proceedings of the Second International Conference on
the Practical Application of Intelligent Agents and Multi-Agent Technology, pages
467–489, London, April 1997.

18. D.G.A. Mobach, B.J. Overeinder, N.J.E. Wijngaards, and F.M.T. Brazier. Man-
aging Agent Life Cycles in Open Distributed Systems. In Proceedings of the 2003
ACM symposium on Applied Computing, pages 61–65, Melbourne, Florida, 2003.

19. A. Omicini and F. Zambonelli. TuCSoN: a Coordination Model for Mobile In-
formation Agents. In Proceedings of the 1st Workshop on Innovative Internet
Information Systems, Pisa, Italy, June 1998.

20. C.E. Perkins. Mobile IP. IEEE Communications Magazine, 35:84–99, May 1997.
21. K. Pfleger and B. Hayes-Roth. An Introduction to Blackboard-Style Systems Orga-

nization. Technical Report KSL-98-03, Stanford Knowledge Systems Laboratory,
January 1998.

22. A. Polze. Using the Object Space: a Distributed Parallel make. In Proceedings
of the 4th IEEE Workshop on Future Trends of Distributed Computing Systems,
pages 234–239, Lisbon, September 1993.

Efficient Agent Communication in Multi-agent Systems 253

23. A. Rowstron. Mobile Co-ordination: Providing Fault Tolerance in Tuple Space
Based Co-ordination Languages. In Proceedings of the Third International Con-
ference on Coordination Languages and Models, pages 196–210, 1999.

24. K. Schelfthout and T. Holvoet. ObjectPlaces: An Environment for Situated Multi-
Agent Systems. In Third International Joint Conference on Autonomous Agents
and Multiagent Systems - Volume 3 (AAMAS’04), pages 1500–1501, New York
City, New York, July 2004.

25. K. Sycara, K. Decker, and M. Williamson. Middle-Agents for the Internet. In
Proceedings of the 15th Joint Conference on Artificial Intelligences (IJCAI-97),
pages 578–583, 1997.

26. R. Tolksdorf. Berlinda: An Object-oriented Platform for Implementing Coordi-
nation Language in Java. In Proceedings of COORDINATION ’97 (Coordination
Languages and Models), LNCS 1282, pages 430–433. Pringer-Verlag, 1997.

27. C.A. Varela and G. Agha. Programming Dynamically Reconfigurable Open Sys-
tems with SALSA. ACM SIGPLAN Notices: OOPSLA 2001 Intriguing Technology
Track, 36(12):20–34, December 2001.

28. M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons, Ltd,
2002.

Adaptive Access Control
in Coordination-Based Mobile Agent Systems

Christine Julien1, Jamie Payton2, and Gruia-Catalin Roman2

1 Department of Electrical and Computer Engineering
The University of Texas at Austin

c.julien@mail.utexas.edu
2 Department of Computer Science and Engineering

Washington University in Saint Louis
{payton,roman}@wustl.edu

Abstract. The increased pervasiveness of mobile devices like cell phones,
PDAs, and laptops draws attention to the need for coordination among
these networked devices. The very nature of the environment requires
devices to interact opportunistically when resources are available. Such
interactions occur unpredictably as device users have no advance knowl-
edge of others they will encounter. The openness of these environments
also requires users to protect themselves and their data from unwanted
interactions while maintaining desired, yet unscripted, coordination. As
the ubiquity of communicating mobile devices increases, the number of
applications supported by the network grows drastically and managing
access control is crucial to such systems. Application agents must directly
manipulate and examine access policies because these networks are often
decoupled from a fixed infrastructure, rendering reliance on centralized
servers for authentication and access policies impractical. In this paper,
we explore context-aware access control policies tailored to the needs of
agent coordination in open environments that exhibit mobility. We pro-
pose and evaluate novel constructs to support such policies, especially in
the presence of large numbers of highly dynamic application agents.

1 Introduction

Ubiquitous computing devices communicate wirelessly, opportunistically form-
ing ad hoc networks not connected to a wired infrastructure. These networks can
include a handful of devices or thousands of heterogeneous components, making
coordinating and mediating their competing needs a massive task. In such en-
vironments, distributed applications exchange information or coordinate tasks.
These applications are commonly structured as logical networks of mobile agents.
Mobile agents (or application agents) carry all or part of a particular applica-
tion’s behavior and are empowered with the ability to move through the network
of physically mobile devices. Much research focuses on developing middleware
to facilitate interactions among these highly dynamic application agents.

This paper focuses on systems that use tuple spaces for coordination, The
original Linda model [1] provides a centralized tuple space where application

R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 254–271, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Adaptive Access Control in Coordination-Based Mobile Agent Systems 255

agents exchange information using content-based matching of patterns against
data. Variations on this theme adapt it to the mobile environment where a cen-
tral repository is not feasible. The benefits of a tuple space model are twofold.
First, the tuple space affords a decoupled manner of communication, eliminat-
ing the need for a priori knowledge of the identities of communication partners.
This facilitates flexible coordination in open environments in which mobile agents
come and go without notice. Second, the model masks the complex communica-
tion details associated with handling frequent, unannounced disconnections that
characterize mobile networks. This allows novice programmers to create complex
applications in environments for which it is generally difficult to program.

Tuple space implementations have enjoyed much popularity not only within
the research community, but also in the commercial sector, where applications
have reached real-world deployed status. OptimalGrid [2] uses IBM’s TSpaces [3]
to coordinate parallel processes in large-scale computations. TSpaces also sup-
ports communication among devices in an automobile, among components of a
smart house, and in vending machine maintenance. JavaSpaces [4] supports the
Jini service infrastructure and has been deployed in many situations including
the integration of proprietary law enforcement databases to enhance information
availability and the creation of tourism networks linking potential travelers, air-
lines, and hotels. More recently, a number of mobile agent middleware systems
designed for ad hoc networks have begun to utilize tuple space based coordina-
tion including Lime [5], EgoSpaces [6], and MARS [7]. These systems address
tuple space coordination in highly dynamic environments.

In open and dynamic mobile systems, security concerns of three types arise:
protecting hosts from malicious agents, protecting agents from tampering hosts,
and securing data. Commonly referenced approaches [8] address the first two con-
cerns in mobile agent systems. Executing agents using “safe interpreters” [9–11]
provides a sandboxing effect that protects hosts from errant code. Proof-carrying
code [12] can verify an agent before it runs on a new host. D’Agents [10] uses
public-key cryptography to authenticate incoming agents. The more difficult
problem of protecting agents from tampering hosts comes in two forms: detect-
ing a malicious event and preventing the leakage of sensitive information. The
former can be accomplished by examining execution traces while encryption
schemes [13] have helped to preserve an agent’s secrecy. Finally, undetachable
threshold signatures [14] prevent hosts from tampering with an agent’s data.

Protecting data includes ensuring secrecy and controlling data access. Much
research in ad hoc networks has specifically addressed securing ad hoc routing
protocols. In addition, approaches like the Secure Message Transmission pro-
tocol [15] focus on protecting individual data transmissions. Even within the
coordination arena, researchers have devised encryption schemes for communi-
cation with coordination spaces. For example, SAMCat [16] and Yalta [17] use
encryption and authentication to securely transmit tuples into and out of a data
space. Our work focuses on the final issue: controlling access to data. A solution
to this problem is complicated by the fact that, in the mobile environment, dis-
connection from a wired infrastructure renders a centralized solution impossible.

256 Christine Julien, Jamie Payton, and Gruia-Catalin Roman

In traditional access control solutions, a single administrator determines what
kind of access can be provided to particular subjects for certain objects. A com-
mon mechanism in wired networks uses access matrices to describe rights. The
rows of the matrix correspond to users and the columns to objects; a cell in the
matrix contains the access rights a user has on an object. This approach general-
izes several approaches, including access control lists and capability definitions.
In the mobile environment, the number of possible agents and the amount of data
available over the lifetime of the system make direct application of these solutions
impractical. The access control function introduced in this paper overcomes the
limitations imposed by mobile systems by operating over general descriptions of
interacting parties and dynamically adjusting to the changing context.

Section 2 introduces a general coordination model for mobile computing.
Section 3 describes our access control mechanism. Details of a particular imple-
mentation of this mechanism appear in Section 4 and applications showing its
use in Section 5. In Section 6, we discuss the construct’s expressive power and
overhead. Section 7 overviews related work, and conclusions appear in Section 8.

2 A Generalized Coordination Model

In this section, we capture the essential features of tuple space coordination
mechanisms in mobile agent systems. This generalization of coordination allows
us to focus our efforts on creating access control that is not tailored for use in a
specific system. The result is a generalization that spans the gamut from tuple
definition to sophisticated tuple space operations.

2.1 Linda Tuple Space Model

Linda enables coordination through the use of a centralized data repository.
Processes insert data by generating tuples in the repository and retrieve data
through content-based operations on the tuple space. In such an operation, the
requesting process specifies a pattern that the retrieved tuple must match. These
operations are synchronous in that they “block” the issuing process until a tuple
satisfies the operation. Adaptations of this model of coordination have proven
useful in mediating interactions among components that require decoupling in
both space and time, a characteristic of highly dynamic or mobile systems.

2.2 Computational Model

We assume a computing model in which devices (or hosts) can move in physical
space and applications are structured as a community of mobile agents that can
migrate among hosts. In our computing model, the agent is the unit of modular-
ity, execution, and mobility, while a host is a container for agents characterized
by, among other things, a location in physical space. We use the term agent to
refer to any stand-alone piece of software code capable of moving between con-
nected hosts. Communication among agents and agent migration can take place
whenever the hosts involved can physically communicate with each other.

Adaptive Access Control in Coordination-Based Mobile Agent Systems 257

2.3 The Tuple Space

Some mobile systems (e.g., MARS [7]) focus on logically mobile agents in a
network of physically stationary hosts, while other systems (e.g., Lime [5] and
EgoSpaces [6]) integrate physical and logical mobility. Each of these systems fa-
cilitates interactions among large numbers of application agents by using a tuple
space that other hosts or agents can access. Tuple spaces can be permanently
bound to hosts, to agents, or distributed among a combination of the two. The
distribution of the tuples is irrelevant with respect to access control; the key
aspect of the representation is how application agents access data. In this paper,
we assume a tuple space bound to each mobile agent. This choice is motivated
simply from a modeling perspective to simplify the discussion of and reasoning
about our access control policies. Using this model, we can simulate other ap-
proaches. For example, to simulate tuple spaces bound to a host, we permanently
associate an agent to each host and use its tuple space as the host’s tuple space.
On the other hand, to simulate access control policies bound to an individual
data item, we can create a new agent for the individual data item. The data
item’s access control is then controlled by the dedicated agent.

The control of each unit (agent, host, or event data item) over its own data
caters to the needs of mobile applications that must often operate autonomously
in order to handle the uncertainty of the environment. Agents or devices may
interact for a period of time, only to be disconnected and never meet again. Such
challenges render any centralized approach to data management infeasible.

2.4 Tuples and Patterns

We generalize a tuple to one in which each field is identified by a name. A
tuple is an unordered set of triples: 〈(name, type, value), . . .〉. For each field,
type is the data type of value. In a tuple, each field name must be unique. Users
access tuple spaces by matching patterns against tuples. A pattern has the form:
〈(name, type, constraint), . . .〉. A constraint provides requirements a field’s value
must match for the tuple’s field to match the pattern’s field. Specifically, the
matching function M is defined over a tuple θ and pattern p as:

M(θ, p) ≡ 〈∀c : c ∈ p :: 〈∃f : f ∈ θ ∧ f .name = c.name
∧ f .type instanceof c.type

:: c.constraint (f .value)〉〉. 1

M requires that, for every constraint in the pattern, there is a field in the tuple
with the same name, the same type (or a derived type), and a value that satisfies
the constraint. While the function requires that each constraint is satisfied, it
does not require that every field in the tuple is constrained, i.e., a tuple must
contain all the fields in the pattern but can contain additional fields.
1 In the notation 〈op quantified vars :range ::exp〉, the variables from quantified vars

take on all values permitted by range. Each instantiation of the variables is sub-
stituted in exp, producing a multiset of values to which op is applied, yielding the
value of the three-part expression. If no instantiation of the variables satisfies range,
the value of the expression is the identity element for op, e.g., true when op is ∀.

258 Christine Julien, Jamie Payton, and Gruia-Catalin Roman

2.5 Basic Operations

Next, we classify the available operations, regardless of the tuple space structure.
These operations fall into two categories: tuple generation and tuple retrieval.
The former create new data items that agents can share for coordination pur-
poses, while the latter allow agents to access available data items.

Tuple Generation. Agents create tuples using out operations: out(T , t),
where T is a tuple space with a particular name located at a particular agent,
and t is a tuple placed in T . In EgoSpaces, an out places the tuple in a local
tuple space controlled by the generating agent. In Lime an out can place a tuple
in any tuple space owned by any agent on a connected host. In MARS the tuple
is created in the local host’s tuple space. For the purposes of access control,
understanding tuple generation is important if agents can create tuples in other
agents’ tuple spaces. In these cases, the agent responsible for the target tuple
space often desires the ability to express restrictions on the types of data that
can be inserted or on which other agents can generate that data.

Tuple Retrieval. To read and remove tuples, agents use rd and in oper-
ations respectively, which assume three forms: blocking, atomic probing, and
scattered probing. The blocking form, rd(T , p), returns a tuple matching the
pattern p from the tuple space T . The tuple space can be either local to the
agent or controlled by another agent. Atomic probing operations, rdp and inp,
guarantee, if a matching tuple exists, it is returned, but they can return ε if no
match exists. Like the blocking operations, they are atomic with respect to the
tuple space on which they are issued; in some cases in the mobile environment,
guaranteeing this atomicity can be expensive. Scattered probing operations, rdsp
and insp offer weaker guarantees. While these access operations entail only sin-
gle tuples, many extensions allow simultaneous access to groups of tuples. These
operations come in all three forms described above and are referred to as group
operations, e.g., rdg refers to a blocking operation that returns all matching tu-
ples from the tuple space. Access control for tuple retrieval operations is more
obvious and natural than for the former tuple generation operations. The agent
in control of the data items may desire some data to be read only, visible only
to certain parties, or mutable only under certain conditions.

Different models present tuple space operations to the user in different ways.
In Lime, agents operate over a federation of connected tuple spaces, while in
EgoSpaces, agents operate over projections, called views, of all available data.
These complex interactions can be reduced to the operations described above.
We next investigate providing access control mechanisms for systems whose in-
teractions can be expressed using this generalized tuple space model.

3 Access Control Function

Given the coordination model described previously, an agent assumes respon-
sibility for mediating access to its data. The ability to control access in this
manner is fundamental because it allows the access policies to reflect an agent’s
instantaneous needs. This is especially important in the highly dynamic mobile

Adaptive Access Control in Coordination-Based Mobile Agent Systems 259

environment where mobile agents want to constantly adjust their behavior to
adapt to a changing context that can include communicating with unpredictable
parties. To achieve flexible access control in this environment, each agent speci-
fies an individualized access control function.

We allow an agent to restrict which other agents access its data and the man-
ner in which the access occurs. To accomplish the former, a requesting agent must
provide credentials identifying itself. To accomplish the latter, the access con-
trol function accounts for the operation being performed. In the end, each agent
defines a single access control function that takes as parameters a tuple, a set of
credentials identifying the requesting agent, the operation being performed, the
pattern used in the operation, and the owning agent’s profile (defined next). This
function returns a boolean indicating whether the requested access is allowed.

3.1 Profiles

We introduce a profile to maintain properties of each agent, which we represent
as a tuple. Particular applications or coordination systems may require specific
attributes in this profile. In general, we assume a profile contains at least a
unique host id identifying the agent’s host and a unique agent id.

3.2 Parameters

An access control function takes five parameters: the credentials, operation, tu-
ple, pattern, and the owner’s profile. We limit ourselves to these parameters
because they capture the aspects of the coordination model we outlined previ-
ously. One could envision the inclusion of additional parameters that measure
behaviors over the lifetime of the system, e.g., an access decision could be made
based on the history of operations on a particular data item. We choose not to
include those at this time because we feel the required bookkeeping overhead is
not met by a demand from potential applications.

Credentials. Credentials allow an agent to convey information about itself. In
simple cases, they can be a standard set of attributes, e.g., the agent’s id or
a third-party authentication. When an agent has a priori knowledge of the ac-
cess requirements, credentials can be more complicated, e.g., a password. When
constructing credentials, an agent may desire not to give away too much infor-
mation, e.g., if the agent has multiple passwords, it should send only the correct
one. However, this is not required in our access control mechanism because an
agent’s credentials are not directly exposed to other agents. These expressive
credentials are especially beneficial in open and dynamic mobile environments,
where it is often not possible to know a priori which agents can access restricted
information. Instead, agents must prove they have required privileges. Agents
select their credentials from the union of the host profile and the agent pro-
file. The credentials are then presented as a tuple of attributes, which allows
an access control function to use pattern matching to evaluate credentials. The
credentials and their transmission with the operation are assumed to be private.
This security is outside the scope of this paper but could be accomplished using
cryptography schemes already under development.

260 Christine Julien, Jamie Payton, and Gruia-Catalin Roman

Operation. The access control function can also account for the operation re-
quested. Often, some data should be restricted to read-only access, yet current
systems do not inherently allow this restriction. Considering the operation when
determining access allows a dynamic application to permit one set of operations
for some agents, but different operations for others.

Requested Tuple. The access control function can operate over the tuple to be
returned from an operation. Pattern-matching allows this portion of the access
control function to be easily defined while remaining flexible.

Pattern. A powerful component of the access control function is its ability
to account for the pattern used in the content-based operation. The pattern
provides information about an application’s prior knowledge of the data. The
owning agent may allow access only to agents that know the “correct” way to
access the data (e.g., providing a wild card pattern that matches any tuple may
not be acceptable). Some knowledge of the structure of the requested tuple might
indicate that the requesting agent shares common application goals.

Owner’s Profile. The access control function also considers the owner’s current
state. Because the access policy is determined dynamically, access can be granted
based on context information. In some cases, data may never be sent wirelessly
between devices unless they are within a secure physical environment where
eavesdropping is known to be impossible.

3.3 The Access Control Function Defined

Formally, the access control function can be represented as: ACF : T × C ×
O × P × Π → {0, 1}, where T is the universe of tuples, C is the universe of
credentials, O is the finite set of operations, P is the universe of patterns, and
Π is the universe of profiles. The access control function (ACF) maps the values
of the parameters to a boolean indicating the access decision. The function can
also be represented as: access = ACF(credentialsr, op, tuple, pattern, profileo); r
is the requesting agent and o is the tuple’s owner.

We discuss the expressive power of this construct later. For now we consider
what it cannot easily represent. Access decisions cannot be based on properties
of the requesting agent not included in its credentials. Therefore the requesting
agent must carefully construct the credentials it sends with each request. The
access decision cannot rely on arbitrary environmental properties, e.g., an agent
cannot base a decision on the number of copies of a tuple. The access control
function lends itself well to mobile environments because it allows adaptive poli-
cies. Access decisions are transparent to requesting agents; if access is denied, a
requester does not even know that the matching tuple existed.

4 A Sample Implementation

The access control model is intentionally not presented in the context of any par-
ticular system. Instead, we have argued that it can be integrated with many tuple
space based coordination systems matching the form described in Section 2. As

Adaptive Access Control in Coordination-Based Mobile Agent Systems 261

a demonstration of the feasibility and mechanics of such an integration, we have
added this access control mechanism to a particular coordination middleware,
EgoSpaces. We expect that, while some of the challenges we encountered are
unique, other lessons learned will apply across coordination models.

In this section, we first highlight the novel features of EgoSpaces that make
it amenable to coordination in ad hoc networks. This discussion also provides
the information necessary to understand the integration of our access control
mechanism. We complete this section with a technical description of the imple-
mentation of the access control mechanism within EgoSpaces. The description
of the EgoSpaces model and middleware is intentionally brief. The interested
reader can find a more careful evaluation of the model and its associated re-
search concerns in the literature [6].

4.1 EgoSpaces Overview

EgoSpaces addresses the needs of agents in large-scale heterogeneous environ-
ments. An agent operates over a context that can include, in principle, all data
in an entire ad hoc network. EgoSpaces’ unique model of coordination, however,
structures data in terms of views, or projections of the maximal set of data. Each
agent defines its own views; these individual views abstract the dynamic envi-
ronment by constraining properties of the network, hosts, agents, and data. To
further reduce programming costs, EgoSpaces transparently maintains views;
as hosts and agents move, a view’s content automatically reflects the context
changes without the agent’s explicit intervention.

Practically, an agent defines its view as a set of constraints over the net-
work, hosts, agents, and data. Within EgoSpaces each view is managed by an
EgoManager. Each host is associated with a single EgoManager, and all the agents
residing on a host register with the EgoManager before coordinating with other
agents. When registering, an agent’s local tuple space contents become the re-
sponsibility of the EgoManager, who mediates communication between connected
agents. The application agents implicitly use the EgoManager to define and in-
teract with their views, which can require the EgoManager to interact with other
EgoManagers (and, by association, other agents) on remote hosts. An agent issues
content-based retrieval operations on its views. These operations are actually ser-
viced by the EgoManager with which the agent is registered. The EgoManager
uses the pattern provided to select tuples that match the operation request and
evaluates each tuple individually to determine whether or not the tuple satisfies
the view and is a viable candidate for return to the requesting agent.

4.2 Integrating Access Controls with EgoSpaces

EgoSpaces employs the agent-specified access control function on a per-view
basis. When an agent defines a view, it attaches a set of credentials and a list
of operations it intends to perform on the view. The EgoSpaces middleware can
then use each contributing agent’s access control function to determine which
tuples belong in the view. In the end, the view contains only the tuples that
qualify via their owning agent’s access control function.

262 Christine Julien, Jamie Payton, and Gruia-Catalin Roman

In providing access controls in EgoSpaces, we use credentials and access con-
trol functions along with the content-based retrieval and pattern matching mech-
anism already present in the system. Upon integrating the access control func-
tion, a set of credentials is now included as part of the view definition. These
credentials are simply properties that convey information about the agent. The
agent can alter its credentials at any time. To restrict other agents’ perspectives
according to their respective credentials, each agent also provides a dynamically
modifiable access control function. A requesting agent’s credentials are compared
to the access control function of agents who contribute data to the view to re-
strict the tuples available in the view. With the access control functions in place,
to evaluate a tuple for return to a requested operation an EgoManager extracts
information about the agent (properties of the host the agent resides on, prop-
erties of the agent, and the agent’s access control function) providing the tuple
and compares this information with the constraints defined in the requesting
agent’s view, including the credentials. The latter is the key to the access control
function’s integration into the EgoSpaces middleware. If the tuple satisfies the
view’s constraints and the requesting agent’s credentials satisfy the tuple owner’s
access control function, then the requested operation can be performed.

An important aspect of the integration of the access control mechanism de-
scribed in Section 3 into EgoSpaces revolved around the fact that it relies on the
mechanisms inherent to tuple space based systems. Tuples are used to describe
credentials, and access control functions can be described by a set of access poli-
cies defined as patterns, or templates, over tuples. Implementing credentials and
access control functions in this way provides a number of benefits. First, the
pattern matching mechanisms already provided by the tuple space system can
be used to check the credentials against an access control function. Second, we
allow the programmer to construct credentials and access control functions in a
way that he is already familiar with. Third, using tuples and templates allows
for flexibility and adaptation, since adding and removing fields from tuples and
patterns is relatively simple. Finally, the use of tuples and patterns allows for
expressive access control functions and credentials since access control may be
expressed according to any property of the interacting agents.

The EgoSpaces system requires certain assumptions about its operating en-
vironment to provide atomic consistency guarantees regarding the performance
of its operations on views. More details on these assumptions and dealing with
environments where they do not hold can be found in [6]. Because the added
access control provisions involve only local decisions at each contributing host,
they have no negative impact on view consistency.

5 Programming with Access Control Mechanisms

In this section we demonstrate the use of access controls within the framework of
the EgoSpaces coordination system. We first describe the programming interface
for using the access control function within EgoSpaces. We then describe two
specific applications that use the described interfaces. We selected examples

Adaptive Access Control in Coordination-Based Mobile Agent Systems 263

that apply in differing application domains to give a sense of the access control
mechanism’s flexibility. We do not give extensive details of the coordination
mechanics specific to the EgoSpaces middleware but instead focus on the access
control aspects of the two applications.

5.1 The Access Control API

Figure 1 shows the public API for defining and using credentials. As discussed
in the previous section, an agent defines credentials that it sends with its view
definition in EgoSpaces (or simple operations in other coordination systems) to
identify itself to the other party. The first method in the Credentials interface,
selectProperty, allows the agent to select a property from either the agent’s
own profile or its host profile to include in the credentials. The second method,
dropProperty, allows an agent to remove a property from its credentials.

selectProperty(String profileType, String propertyName)
– select a property (identified by the propertyName) from either the host or

agent profile (identified by profileType) to include in the credentials
dropProperty(String propertyName)

– drop the property identified by propertyName from the credentials

Fig. 1. The Credentials API Within the EgoSpaces Middleware.

addConstraint(String property)
– add a constraint that requires the existence of field with the given name

addConstraint(String property, String function, Serializable value)
– add a constraint that requires the named field to satisfy the given function

and value
addConstraint(String property, ConstraintFunction cf)

– add a constraint that requires the named field to satisfy the given
application-defined constraint function

addPermittedOperation(String operation)
– add the specified operation or operations to the list of those allowed

matches(Credentials)
– determines whether the provided credentials match this policy

Fig. 2. The AccessControlPolicy API Within the EgoSpaces Middleware.

An agent who provides data defines an access control function to protect
itself and its data. Each access control function is composed of one or more
access control policies. The API for this component appears in Figure 2. The
API contains three mechanisms to add a constraint to the access control policy.
The first allows an agent to add a constraint that requires the credentials to
contain a field with a certain name but no specific value. The second mechanism
allows the agent to add a constraint that uses a built-in function (e.g., “=”) to
constrain the value of a named property in the credentials. The third and final

264 Christine Julien, Jamie Payton, and Gruia-Catalin Roman

mechanism allows the application agent to define a tailored constraint function
that restricts the value of the named property in the credentials. This API also
shows the method an agent uses to restrict the operations that can be performed
on the coordination space. The final method evaluates the provided credentials
to determine whether they match the constraints of this policy.

We provide the access control function as a disjunction of access control
policies to allow more expressive functions. We require the combination of the
credentials and the specific operation to satisfy at least one of the policies within
the access control function. Figure 3 shows how agents assemble access control
policies into a single access control function through an add method and a re-
move method. The matches method determines whether the credentials and
the operation satisfy at least one of the access control policies.

addPolicy(AccessControlPolicy acp)
– add the specified policy to the agent’s access control function

removePolicy(AccessControlPolicy acp)
– remove the specified policy from the agent’s access control function

matches(Credentials cred)
– determines whether or not the provided credentials match the policies

contained within this access control function

Fig. 3. The AccessControlFunction API Within the EgoSpaces Middleware.

5.2 A Music Sharing Application

A music sharing application for mobile users implemented on top of EgoSpaces
serves as one vehicle for testing the access control implementation. The appli-
cation provides users with access to a music service with sharing, search, and
down-load capabilities. To determine what music a user sees, the user provides
properties that define the music sharing application’s view. This includes a net-
work constraint that includes only data residing on hosts within a certain num-
ber of network hops, a host constraint that requires the data to reside on hosts
which are traveling in the same direction as the user, and a data constraint that
restricts the returned items according to a file size limit. A screen shot of the
resulting application is shown in Figure 4.

The data is also restricted according to the credentials provided by the agent,
which includes a unique agent id and a known phrase encrypted with a shared
password provided in the user’s official registration from the music service. This
password encrypted phrase authenticates the user as a subscriber. This phrase
is provided as a product key when the user retrieves (purchases) the applica-
tion from a reputable source (vendor). Since users share music only with others
subscribed to the service, the agent also provides an access control policy which
specifies that a requesting agent must have an agent id and must have the correct
phrase encrypted with the subscription password. Successful decryption of the
phrase by the receiving agent implies that the requesting agent holds the correct
password. The code to define the credentials within the application is:

Adaptive Access Control in Coordination-Based Mobile Agent Systems 265

Fig. 4. The subscription music service.

Credentials c = new Credentials();

c.selectProperty(AGENTPROFILE, ‘‘Passphrase’’);

First, the agent creates a credentials object. It then selects the passphrase prop-
erty from the agent’s profile that was handed out when the code was installed.

To build the access control policy, the agent defines the policy and adds it
to the access control function:

AccessControlPolicy policy = new AccessControlPolicy();

policy.addConstraint(‘‘Passphrase’’, ‘‘=’’, encryptedPhrase);

policy.addPermittedOperation(Operations.ALLRDS);

acf.addPolicy(policy);

In this code, the agent first creates a new policy. It then adds the single constraint
that requires the passphrase to be equivalent to this agent’s known encrypted
phrase. It then adds to the permitted operations all read operations, preventing
any admitted agents from removing any of the agent’s own music files. Finally,
the agent adds the defined policy to the access control function.

This music sharing application requires an initialization which can be ar-
guably termed centralized. As indicated above, it can be equated with receiving
the software with a subscription, from a reputable source which provides the

266 Christine Julien, Jamie Payton, and Gruia-Catalin Roman

appropriate product key. After installing the music sharing software, users share
music in a completely decentralized fashion, making autonomous decisions with
no reliance on the availability of a centralized authority.

5.3 Administrative Domains

Many applications restrict agent operations to administrative domains. Assume
nested domains defined as a university, a department, and a research group.
To provide security guarantees, applications limit access to certain data to only
computers on the university’s network. Still other data ought to be restricted to
departmental computers or to research group computers. A user in the research
group, working on a mobile computer, wants to use a software license of which
the research group has n copies. The licenses are stored as tuples in a tuple
space. Each computer in the group carries a tuple space; the available licenses
are initially distributed in some random fashion. A user can take a license if it is
not in use and the user holding the license is within communication range. The
agents controlling the licenses restrict access to only group members who have
departmental authentication (retrieved a priori), and are running on computers
in the university domain. To retrieve a license, a user provides these three prop-
erties as credentials and attempts to perform an in operation for a license from
a connected tuple space. If successful, the number of available licenses decreases
by one. When the user finishes using the software, the agent replaces the license
in its local tuple space.

To define the credentials in this application, an agent requesting a license
uses the following code:

Credentials c = new Credentials();

c.selectProperty(HOSTPROFILE, ‘‘University’’);

c.selectProperty(HOSTPROFILE, ‘‘Department’’);

c.selectProperty(HOSTPROFILE, ‘‘Group’’);

The agent creates an empty credentials object and then selects three properties
from the host’s profile to add to the credentials: the university, the department,
and the group. These three characteristics will be used to determine whether the
agent has the right to access the license it requests.

Agents responsible for the licenses protect them by using access control func-
tions that restrict access based on the administrative domains outlined above.
This access control function is defined using the following code:

AccessControlPolicy policy = new AccessControlPolicy();

policy.addConstraint(‘‘University’’, ‘‘=’’, ‘‘WUSTL’’)

.addConstraint(‘‘Department’’, ‘‘=’’, ‘‘CSE’’)

.addConstraint(‘‘Group’’, ‘‘=’’, ‘‘mobi’’);

policy.addPermittedOperation(Operation.SINGLES);

acf.addPolicy(policy);

After creating a new policy, the agent adds three constraints to it that restrict
the university, department, and group to the correct set of users. The agent
permits all single operations (that interact with only a single license at a time).
Finally, the policy is added to the access control function.

Adaptive Access Control in Coordination-Based Mobile Agent Systems 267

As these two examples demonstrate, the developer burden for adding access
control to the application is minimized and builds on the notion of tuples and
tuple spaces to ease the learning curve for the application programmer.

6 Discussion

The access control function provides a flexible mechanism for specification of
dynamic and adaptive privileges in mobile systems. Next, we take a deeper look
at two aspects of the access control function: expressiveness and overhead.

6.1 Expressiveness

While its expressiveness makes the access control function flexible and useful in
coordination among constantly changing mobile agents, this flexibility comes at
some cost. On one hand, because credentials can encode arbitrary information
about an agent, particular applications can adapt credentials to their needs. In
addition, because the access control function takes a number of parameters, an
agent can dynamically adjust its policies. However, while complex policies are
possible, constructing the function (from the developer’s perspective) can be-
come difficult as policies become more complex. Fortunately, because the design
employs the use of pattern matching, much of this complexity can be hidden by
the infrastructure.

6.2 Overhead

The addition of the access control mechanism introduces some amount of pro-
gramming overhead, but this overhead is difficult to quantify without a case
study involving users implementing actual access control policies. While this is
a useful future task, it is outside the scope of this paper. Instead we focus on
the overhead due to the additional communication and computation needed to
provide the access control function described previously.

Additional Communication. The key aspect of the communication overhead
is the amount of data (in bits) that must be sent. Before adding the access
control mechanism, the number of bits required to send an operation request is:
b = |op| + |pattern| + |agent id r|, where |op| is the number of bits required to
identify the operation; |pattern| is the number of bits required to represent the
pattern, which depends on the number of fields in the pattern; |agent id | is the
number of bits required to identify the requesting agent so the response can be
returned. It is likely that the pattern, which encodes the content-based nature of
the request, dominates this expression, as the op and agent idr are simple data
types with small, constant lengths.

We can write a similar term to express the number of bits needed to be sent
when using the access control function. This includes only the addition of the

268 Christine Julien, Jamie Payton, and Gruia-Catalin Roman

number of bits necessary to encode the credentials: bacf = |op| + |pattern| +
|agent id r| + |credentialsr|.

Credentials are a tuple. Because tuples are similar to patterns, the number of
bits required to represent the credentials is likely near the number of bits needed
to represent a pattern. If so, the overhead of using access control is approximately
2. An application can directly control the amount of overhead it incurs because
it determines what credentials to send with each request. In this respect, the use
of application intuition to reduce the credentials transmitted to exactly those
required reduces the communication overhead.

Additional Computation. Because the function can contain arbitrary code, its
computational overhead lies in the hands of the application programmer. From
the programmer’s perspective, the operating conditions of the application must
be a primary concern. If so desired, a system can include a mechanism to prevent
undesirable access control functions by bounding the time they are allowed to
run or by imposing restrictions on their capabilities. In most cases, however, the
additional computation required is minimal since the access function may be
limited to a pattern matching function.

7 Related Work

As discussed previously, the use of an access matrix does not directly lend itself to
mobile systems. In one example of attempting to apply such a method, TuCSoN
agents [18] are assigned capabilities defining tuple space operations for particular
patterns in a certain tuple space. An access control list for the tuple space stores
these capabilities. This approach requires that all coordinating parties are known
in advance and that a centralized party can determine access policies statically.

Other systems use encryption for access control. In SecOS [19],, tuples are
unordered sequences of individually encrypted fields, and, to match an encrypted
field, a pattern must contain a correct key. Other work [20] associates keys with
tuple spaces, and an agent must provide the key to access the tuple space. While
both of these models provide access control mechanisms, they require secure key
distribution and management, which affects the scalability of the system.

Law Governed Interaction (LGI) [21] provides an expressive approach to ac-
cess control in which agents must adhere to a law that imposes context-sensitive
constraints on the execution of tuple space operations. A law dictates actions an
agent performs in response to tuple space operations. Programming applications
in LGI requires programming specific actions in the access control policy and
adding a controller to mediate tuple space requests. In contrast, in our model,
programming takes place in the coordination model, and the agent’s requested
operation is checked with the access control function. One aspect of LGI that
separates it from the access control mechanism described in this paper is that it
allows access rules to be imposed from outside the individual agents. We do not
consider such cases in our work because it departs from our view that agents
should be as autonomous as possible.

Adaptive Access Control in Coordination-Based Mobile Agent Systems 269

The Smart Messages system [22] structures a mobile computing system in
much the same way as discussed in this paper. Using Smart Messages, however,
the coordination in the system occurs through the logical migration of Smart
Messages. In this system, access control takes the form of admission control
in determining when to allow migrating Smart Messages to execute on a new
host. The admission managers responsible for this task use information about
the resource needs of an arriving Smart Message as they relate to the available
resources on the node. The access control mechanism described in this paper can
account for more varied information than resource availability by using creden-
tials describing the application agent and using the data items themselves when
making access decisions.

Work targeted directly to ad hoc networks [23] begins to address the need
for credential verification among interacting parties using X.509 certificates. This
work focuses on adapting the chain of verification for certificates to function in
an ad hoc network by using assertions generated by peers in the ad hoc network.
The disadvantage of applying this type of solution in the environments we have
described is that it requires some a priori knowledge shared among the peers
in the ad hoc network in order to be able to verify the credentials of other
participants. Key pre-distribution schemes targeted to sensor networks [24] have
worked without a centralized server to establish pairwise secure communications.
These approaches generally focus on maximizing the total security of the system
to successfully handle more “compromised” nodes. These schemes focus simply
on providing the ability to encrypt data and do not address the need to restrict
access to certain data items based on contextual properties.

Additional work on authentication protocols in ad hoc networks [25, 26] fo-
cuses on securing communications among parties in ad hoc networks. These
protocols tend to attempt to validate the identity of a communicating party.
Our work instead focuses on the data sharing aspects and assumes that agents
do not necessarily care about the exact identity of a coordinating partner, but
about properties of the partner. This style of access control is more in line with
our target environment since we assume that an application does not have a
priori knowledge of the other agents or data it will interact with. The flexible
nature of the access control mechanism described in this paper allows agents to
base access decisions on abstract properties and the content of data, enabling
more expressive access rules.

8 Conclusion

In today’s emerging mobile systems, applications find themselves structured as
networks of mobile agents that must interact to achieve the users’ goals. As mo-
bile devices become increasingly prevalent and more users join mobile networks,
the complexity of mediating interactions among agents multiplies. A significant
roadblock to the widespread deployment of many mobile applications lies in
the inability to secure interactions in this open environment where encounters
with others are necessarily opportunistic and unpredictable. The work presented

270 Christine Julien, Jamie Payton, and Gruia-Catalin Roman

in this paper examined one aspect of this need by introducing a mechanism
for agents to control access to data. This mechanism, in the form of an agent-
tunable function, allows autonomously operating agents to share data with other
connected agents, given some restrictions. Each agent makes individual access
decisions for the data item it “owns” based on numerous properties including
properties of the environment, of the agent’s state, of the requesting agent, and
even properties of the data item itself. By placing control in the hands of indi-
vidual agents, we have eliminated the need for a centralized authority to make
access decisions and thus created an access mechanism that functions in ad hoc
networks where the coordinating parties are not known in advance. Because each
access control decision is independent and made in a decentralized manner, the
access control function naturally scales to networks of high numbers of mobile
agents. Because we started with a foundational model of coordination, the re-
sulting mechanism addresses the access control needs within mobile coordination
models. In particular, the construct provides increased scalability and decoupling
when compared with previous constructs without sacrificing flexibility and ex-
pressiveness.

Acknowledgements

This research was supported in part by the Office of Naval Research under
ONR MURI research contract N00014-02-1-0715. Any opinions, findings, and
conclusions or recommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the Office of Naval Research.

References

1. Gelernter, D.: Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems 7 (1985) 80–112

2. Kaufman, J., Lehman, T.: OptimalGrid: The almaden SmartGrid project: Au-
tonomous optimization of distributed computing on the grid. IEEE Task Force on
Cluster Computing 4 (2003)

3. Wyckoff, P., McLaughry, S., Lehman, T., Ford, D.: TSpaces. IBM Systems Journal
37 (1998)

4. Freeman, E., Hupfer, S., Arnold, K.: JavaSpaces Principles, Patterns, and Practice.
Addison-Wesley (1999)

5. Murphy, A.L., Picco, G.P., Roman, G.C.: Lime: A middleware for physical and log-
ical mobility. In: Proceedings of the 21st International Conference on Distributed
Computing Systems. (2001) 524–533

6. Julien, C., Roman, G.C.: Egocentric context-aware programming in ad hoc mo-
bile environments. In: Proceedings of the 10th International Symposium on the
Foundations of Software Engineering. (2002)

7. Cabri, G., Leonardi, L., Zambonelli, F.: MARS: A programmable coordination
architecture for mobile agents. Internet Computing 4 (2000) 26–35

8. Moore, J.: Mobile code security techniques. Technical Report MIS-CIS-98-28,
University of Pennsylvania (1998)

Adaptive Access Control in Coordination-Based Mobile Agent Systems 271

9. White, J.: Telescript technology: The foundation for the electronic marketplace.
General Magic White Paper, General Magic, Inc. (1994)

10. Gray, R., Kotz, D., Cybenko, G., Rus, D.: D’Agents: Security in a multiple-
language, mobile-agent system. In Vigna, G., ed.: Mobile Agents and Security.
Volume 1419 of LNCS. Springer-Verlag (1998) 154–187

11. Gray, R.: Agent tcl: A flexible and secure mobile-agent system. In: Proceedings of
the 4th Annual Tcl/Tk Workshop. (1996)

12. Necula, G.: Proof-carrying code. In: Proceedings of the Symposium on Principles
of Programming Languages. (1997)

13. Sander, T., Tschudin, C.: Protecting mobile agents against malicious hosts. In
Vigna, G., ed.: Mobile Agents and Security. Volume 1419 of Lecture Notes in
Computer Science. Springer-Verlag (1998) 44–60

14. Borselius, N., Mitchell, C.J., Wilson, A.: Undetachable threshold signatures. In:
Cryptography and Coding—Proceedings of the 8th IMA International Conferemce.
Volume 2360 of LNCS. (2001) 239–244

15. Papadimitratos, P., Haas, Z.: Secure data transmission in mobile ad hoc networks.
In: Proceedings of the 2003 ACM Workshop on Wireless Security. (2003) 41–50

16. National Center for Supercomputing Applications, Integrated Decision Technolo-
gies Group: SAMCat: A securable active metadata catalogue. (2002)

17. Byrd, G., Gong, F., Sargor, C., Smith, T.: Yalta: A secure collaborative space for
dynamic coalitions. In: IEEE 2nd SMC Information Assurance Workshop. (2001)

18. Cremonini, M., Omicini, A., Zambonelli, F.: Coordination and access control in
open distributed agent systems: the TuCSoN approach. In Porto, A., Roman, G.C.,
eds.: Coordination Languages and Models. Volume 1906 of LNCS., Springer-Verlag
(2000) 99–114

19. Bryce, C., Oriol, M., Vitek, J.: A coordination model for agents based on secure
spaces. In Ciancarini, P., Wolf, A., eds.: Proceedings of the 3rd International
Conference on Coordination Models and Languages, Springer-Verlag (1999) 4–20

20. Handorean, R., Roman, G.C.: Secure servise provision in ad hoc networks. In:
Proceedings of the 1st International Conference on Service Oriented Computing.
(2003)

21. Minsky, N., Minsky, Y., Ungureanu, V.: Safe tuplespace-based coordination in
multi agent systems. Journal of Applied Artificial Intelligence 15 (2001)

22. Kang, P., Borcea, C., Xu, G., Saxena, A., Kremer, U., Iftode, L.: Smart messages: A
distributed computing platform for networks of embedded systems. The Computer
Journal Special Issue on Mobile and Pervasive Computing ((to appear))

23. Keoh, S.L., Lupu, E.: Towards flexible credential verification in mobile ad hoc net-
works. In: Proceedings of the ACM Workshop on Principles of Mobile Computing.
(2002) 58–65

24. Du, W., Deng, J., Han, Y.S., Varshney, P.K.: A pairwise key pre-distribution
scheme for wireless sensor networks. In: Proceedings of the 10th ACM Conference
on Computer and Communication Security. (2003) 42–51

25. Weimerskirch, A., Thonet, G.: A distributed light-weight authentication model for
ad hoc networks. In: Proceedings of the 4th International Conference on Informa-
tion Security and Cryptology. (2001) 341–354

26. Balfanz, D., Smetters, D.K., Stewart, P., Wong, H.C.: Talking to strangers: Au-
thentication in ad hoc wireless networks. In: Network and Distributed System
Security Symposium. (2002)

Separation of Concerns for Mechatronic Multi-agent
Systems Through Dynamic Communities�

Florian Klein�� and Holger Giese

Software Engineering Group, University of Paderborn,
Warburger Str. 100, D-33098 Paderborn, Germany

{fklein,hg}@upb.de

Abstract. Multi-agent systems present a promising paradigm for coping with the
complexity of intelligent mechatronic applications, particularly where purposeful
behavior and complex structures emerge from the interactions of seemingly sim-
ple elements. The safety of mechatronic systems relies on predictability, which is
apparently at odds with the concept of emergent behavior. When designing com-
plex mechatronic multi-agent systems, the main challenge thus lies in achieving
predictability without ruling out the desired emergent behavior. We propose to
achieve this by decomposing the requirements and design into largely indepen-
dent concerns, represented by social structures with behavioral norms, which are
reconciled at the agent level. An explicit grounding of all constructs in observable
entities from the mechatronic system’s environment model makes them amenable
to formal analysis and enables rapid prototyping.

1 Introduction

The field of mechatronics [1] combines mechanical, control, electrical, and software
engineering. Its aim is to improve the performance of mechanical systems by embed-
ding them with intelligent electronic controllers that analyze and exchange information
and adapt and coordinate behavior. Due to their relative autonomy, these controllers are
typically interpreted as agents. Applying the multi-agent system paradigm to describe
their interactions allows the mechatronics community to build on a wealth of experience
concerning the design of distributed information systems.

The RailCab project1 is a prominent effort to develop such a mechatronic multi-
agent system. Fleets of intelligent shuttles, capable of transporting a small number of
passengers or a cargo container, autonomously navigate a passive track system and
make independent and decentralized operational decisions. The underlying vision is to
combine flexible, on-demand scheduling with extreme cost and resource effectiveness,
thus combining the specific advantages of individual and public transportation. Even
though shuttles compete by bidding on transportation tasks, they may collaborate in

� This work was developed in the course of the Special Research Initiative 614 - Self-optimizing
Concepts and Structures in Mechanical Engineering - University of Paderborn, and was pub-
lished on its behalf and funded by the Deutsche Forschungsgemeinschaft.

�� Supported by the International Graduate School of Dynamic Intelligent Systems.
1 http://www-nbp.upb.de/en

R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 272–289, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Separation of Concerns for Mechatronic Multi-agent Systems 273

energy-efficient ad-hoc convoys. Their most advanced aspect is their ability to reeval-
uate their goals using a novel process termed self-optimization, which allows them to
evolve their strategies and behaviors in response to their environment.

From the software engineering point of view, the key challenge is constraining this
process to safe behaviors. Mechatronic systems are normally safety-critical, as failures
in the control software affect a mechanical system that might potentially harm peo-
ple or the environment. The classical approach to mechatronic system design therefore
strictly relies on analytic predictions of a system’s properties in order to guarantee that
a design meets a set of carefully elaborated safety requirements. Now, self-optimization
necessarily introduces a certain amount of unpredictability into the system.

Networking self-optimizing systems multiplies this effect. Unfortunately, many
mechatronic solutions specifically derive their power from the cooperation between
agents. A particularly fascinating effect in this respect is the emergence of complex
behaviors or structures from simple, local interactions.

This is the focus of the subfield of swarm intelligence [2]: How can a set of simple
rules makes a multitude of individual agents behave in a coordinated fashion? When
designing such systems, the main challenge lies in managing the inherent combina-
torial complexity and handling the way individual agents mutually affect each other.
Successful agent-based solutions are often inspired by analogies to natural or social
phenomena, not least because developers find such metaphors a useful or even essen-
tial tool for understanding complex systems. Designing or even understanding dynamic
multi-agent systems is usually not possible in a purely analytical fashion.

While such inaccessibility to analysis and a safety-critical system’s need for analytic
predictions seem to be diametrically opposed, we hope to be able to reconcile both ap-
proaches. In order to enable the use of self-optimization and emergence in mechatronic
systems, we propose to separate different system concerns at the multi-agent system
level by assigning them to specific agent communities. Conflicts between the prescrip-
tions of different communities are then resolved locally in each agent. The system de-
signer maps each requirement to a particular system concern, which specifically allows
the extraction of safety-related requirements. As each concern can, to some extent, be
studied in isolation, this results in a reduced complexity of the overall design. Possible
conflicts at the intersection points between concerns can be systematically identified
and resolved using a combination of formal methods and experimental validation.

Both techniques are enabled by the principle of explicit grounding: All abstract
concepts such as communities or promises need to be expressed in terms of observable
entities from the mechatronic system’s environment model. This provides a shared vo-
cabulary for the formal specification of the concerns’ required properties and a common
base for merging different concerns, which is necessary for conducting a formal analy-
sis of their composition. It equally provides operational semantics for the abstract con-
cepts, which facilitates the execution and thus early testing of models. Appropriate tool
support would allow a prototyping approach with rapid cycles of experimental evalua-
tion and subsequent refinement of the design specification. However, explicit grounding
restricts the types of agent behavior we can express to an executable subset of standard
software engineering concepts, which in turn limits our ability to model sophisticated
cognitive capabilities.

274 Florian Klein and Holger Giese

Shuttle (White Team)

Shuttle (Black Team)

Wireless Base Station

Task Object

Symbols

Fig. 1. Elements of the physical model.

Our approach is nonetheless sufficient for reasoning about the reactive and proactive
behaviors of mechatronic agents and their motivations. We illustrate this with the help
of an example inspired by the RailCab project, which we are going to use throughout
this paper.

In the following section, we introduce the physical domain model. It serves as the
basis for the conceptual models in Section 3. Different concerns of the system are de-
fined by modeling and decomposing the requirements (Section 3.1), and assigned to
specific responsible communities that are fleshed out in some detail (Section 3.2). In
Section 4, the composition of the concerns is discussed, dealing with local conflicts
(4.1) and conflicting commitments (4.2). The resulting specification is then used for
rapid prototyping and exploration in Section 5. We first discuss its operationalization
(Section 5.1) and then execute it to identify and resolve undesired emergent behaviors
(Section 5.2). We conclude with a short summary and an outline of our future plans.

2 Physical Domain Model

As it is directed at enabling the exploration of ideas and strategies through rapid pro-
totyping [3], our treatment of agent-related high-level concepts closely builds on estab-
lished software engineering practices. The physical domain model, which is basically
the system’s fundamental ontology expressed as a UML class diagram, describes the
concrete entities that are present in the system, i.e. consists of the agents themselves
and a model of the perceivable environment as it presents itself to their sensors. It serves
as an explicit conceptual and technical grounding for all the more abstract concepts we
subsequently introduce. In this way, we hope to benefit from both the power and expres-
siveness of abstract reasoning and the pragmatic elegance of non-symbolic intelligence
and physical grounding [4].

As we are discussing mechatronic systems, physical reality offers itself as the ev-
ident choice as the object of a - literally - physical domain model. Specifying such
a model already is a common design activity, as control software is usually designed
and tested within a simulated environment that faithfully models the actual sensor in-
put used in later development phases and the production system. As the elements of the
model refer to physical objects and their perceivable attributes, their semantics are quite
straightforward and intuitive.

In order to focus on the exploration of our methodological ideas, we used a simpli-
fied domain model based on the RailCab application as a test case for the application
of the approach we present in this paper. As structuring the coordination and control
problems inherent in the application by means of separate concerns is the focus of our

Separation of Concerns for Mechatronic Multi-agent Systems 275

Fig. 2. The physical domain model.

approach, we kept the envisioned coordination architecture largely intact, but allow the
shuttles to move freely across a plane (see Figure 1). The use of tracks would make
distances between shuttles depend on their current tracks (discrete) and their relative
positions on those tracks (continuous), which would needlessly encumber several dia-
grams with case differentiations without adding anything on the conceptual level.

In our example, the physical model mainly consists of physical entities, i.e. the shut-
tles, transportation tasks manifested as stacks of containers, and wireless base stations.
A kernel provides a simulated plane and a discrete system-wide clock. Each entity may
receive and publish messages, providing a simple blackboard-type messaging service.2

Entities have an identifier and positions, shuttles have a velocity and an energy level,
tasks have a certain number of containers left, and base stations have a maximum trans-
mission range (see Figure 2).

This static model may now be augmented by a specification of its basic dynam-
ics. This physical process model is once again restricted to the immediate semantics
of observable ’physical’ actions. Obviously, this rules out the description of more com-
plex behaviors, cognitive processes and deliberated interactions. The model is, however,
quite sufficient to describe the effectors that agents use for the manipulation of their en-
vironment. It thus provides a purely ’phenomenological’ description of the behaviors
exhibited by the system, which is all that is required at this point.

As a formalism to describe these processes, we use story patterns [5], which will
keep playing a prominent role throughout the whole development process. Story pat-
terns are an extended type of UML collaboration diagram based on the theory of graph
grammars [6]. Their appeal is in their ability to formally express both constraints in
the vein of the UML’s Object Constraint Language (OCL) and behaviors, described as
the transition between two instance situations serving as pre- and postconditions, with
one straightforward graphical notation. Figure 3 shows two simple examples. Patterns
may impose constraints both on structure (one kernel, one shuttle) and attributes (pay-

2 Though we abstract from the messaging infrastructure, neither our approach nor the appli-
cation example are principally limited to centralized messaging. A distributed, decentralized
solution is entirely feasible, but would introduce replication issues that would distract from the
paper’s focus.

276 Florian Klein and Holger Giese

s1 : Shuttlek : Kernel
kernel shuttle

- position := position + velocity

- energy := energy - |velocity|2
- time := time+1

(a) Movement of the shuttles
{distance(s1.position, t1.position) < s1.radius}

t1 : Task s1 : Shuttle<<create>>

payload transport - payload = null

- velocity = (0,0)

{t1.containers > 0}

- containers := containers -1

(b) Loading a container into a shuttle

Fig. 3. Definition of basic dynamics.

load=null). If these constraints are successfully matched against the instance graph at
run-time, the pattern is executed and may change the graph structure (create or delete
objects and associations), modify attributes (time:=time+1) or trigger methods invoca-
tions.

Figure 3(a) shows the process for shuttle movement. When moving, shuttles expend
energy at a rate proportional to the square of their speed, |velocity|2. Shuttles may form
and dissolve energy-efficient convoys, which affects the rate. For tasks, we define the
following processes: creation, loading containers into and unloading them from shuttles,
paying shuttles by transferring energy, and termination. Figure 3(b) displays the story
pattern for loading a container. Furthermore, all agents publish messages. Even though
the scope of possible actions may seem extremely limited at this level, it serves as the
setting of rich and complex interactions taking place at a higher level of abstraction,
including negotiations and cooperative problem solving.

3 Conceptual Model

These higher levels of abstraction can now be described by building on the semantics of
the physical domain model. Increasingly complex definitions may be used as building
blocks in further definitions describing goals, interaction protocols or basic delibera-
tions. In our simplified example, this is a relatively direct process leading straight from
the physical model via requirements to structures and behaviors. For more complex
systems, a more intricate iterative process going back and forth between the different
concerns of the model is usually necessary.

3.1 Requirements

The physical domain model now provides us with a basic vocabulary to state require-
ments. For the needs of our example application, the ability to describe ’hard’ goals that
can be precisely defined in terms of the physical model is sufficient. They can easily be
expressed using story patterns. The primary goal of the shuttle agents is to maximize
their energy level, which can be decomposed into maximizing the number of tasks com-
pleted and minimizing the energy consumption. Tasks strive to reach their destination
both as quickly and as cheaply as possible. These subgoals are contrary to each other
and therefore need to be adequately balanced. A secondary but nonetheless very impor-
tant concern is safety: a collision between two shuttles needs to be avoided at all cost.
The hazard and an actual accident are formalized by Figures 4(a) and 4(b).

Due to interdependencies, the progression from the physical model to the require-
ments will usually not be as strictly sequential as it is presented here: requirements may
motivate the introduction of new entities and possible actions, which may in turn lead

Separation of Concerns for Mechatronic Multi-agent Systems 277

(a) Hazardous situation (b) Accident

Fig. 4. Collision between two shuttles.

to additional requirements. This can be seen even in this simple example: The ability to
form convoys, itself clearly motivated by the goal of minimizing the energy consump-
tion, entails the introduction of new subgoals and rules governing convoys.

When attempting to build verifiably safe multi-agent systems, reconciling a set of
possibly conflicting requirements is a central conceptual problem. Especially large-
scale multi-agent systems can quickly lead to intractably complex designs with a
quickly exploding number of possible states. Considering the usually limited resources
of embedded processors, computation may also pose problem at runtime.

We aim to reduce the complexity of the requirements by decomposing them into
largely independent concerns along different, ideally orthogonal, axes. Hierarchical,
spatial or temporal separation criteria are most commonly used. Each of the result-
ing subsets is then assigned to the concerned group of agents, who form a community
charged with its implementation. If we can minimize the dependencies between differ-
ent communities, it becomes much easier to prove that the behaviors they stipulate are
indeed compatible and composable in a safe manner. This will then allow agents a cer-
tain freedom to dynamically join and leave communities, as long as they stay within the
bounds established by the formal analysis. A clean separation between safety-critical
and efficiency-related concerns further allows the use of the appropriate design and
verification tools and methodologies for each problem.

In the example, there are communities responsible for the publication and for the
auctioning and execution of tasks. The safety concerns are addressed by smaller, phys-
ically localized communities that form around the wireless base stations. Finally, the
shuttles team up in virtual companies that coordinate the members’ distribution and
bidding strategies in order to maximize their profits. Shuttles working for the same
company may spontaneously form convoys, which are organized as temporary ad-hoc
communities.

3.2 Communities and Cultures

Communities and Cultures are the cornerstones of our approach’s conceptual model.
They structure and connect many other high level constructs of the model. Cultures are
abstract sets of norms, which include concepts as diverse as roles and behaviors, mes-
sage formats and social conventions concerning the interpretation of behavior. Commu-
nities are concrete groups of agents that implement a particular culture.

A community may either exist as an object in its own right, like a company or a mail-
ing list, or just implicitly defined by its members, like a convoy or the community of
all shuttles near a particular base station. Likewise, membership in a community may
be established explicitly through some attribute or relationship or implicitly through
performing a specified behavior. Either way, membership in a community is a directly
observable property on the physical level, be it as an entry on a membership list (in

278 Florian Klein and Holger Giese

Fig. 5. Implicitly defined membership in a Traffic Control Area.

the form of a published message) or as a shuttle’s current position. This holds true for
all subsequently defined constructs: they are all associated with concrete, though pos-
sibly complex, observable patterns in the physical model. A community is therefore
associated with two story patterns describing the conditions for joining and leaving it.
Figure 5 provides the corresponding patterns for the physically localized traffic control
communities. In the diagrams, cultures, communities and agents are marked with cor-
responding UML stereotypes that serve as a compact notation for classifying objects
with respect to these conceptual categories. Likewise, membership, the special defin-
ing relationship that exists between a community and its agents, is qualified using a
stereotype.

A culture specifies the different roles that occur in a community, complete with
constraints that permit or require their adoption. A role in turn specifies a collection
of behaviors with rules for their invocation, expressed by story patterns. The behaviors
themselves are described using statecharts with real-time annotations.

Behaviors are closely linked to social conventions, which are an abstract but
nonetheless influential part of a culture definition. Social conventions describe the rules
that apply to a community. Normative rules usually prescribe a certain operative behav-
ior, e.g. which shuttle should have the right of way when they are on a collision course.
But in order to model more complex social interactions, it is also useful to have de-
scriptive social conventions that offer a definitive interpretation of an agent’s behavior.
In this context, a concept derived from speech act theory plays an important part: ’Pro-
fessed intentions’ publicize an agent’s intentions and may be classified using speech
act classes such as assertion, permission, prohibition, directive or commitment [7]. A
professed intention can be issued explicitly, usually as a message that has been defined
by an interaction pattern or that conforms to a more generic shared communication lan-
guage, or implicitly, basically as an interpretation of certain acts that has been agreed
upon beforehand. Even though professed intentions are essentially abstract, they are al-
ways tied to an unambiguous manifestation in the physical model and can therefore be
modeled by story patterns. In the models we present, the manifestation of a professed
intention is marked with the respective stereotype. The actual content of the professed
intention is specified independently from the manifestation by means of a dedicated
object, which is associated with the originating agent using the intention stereotype.
The object contains a pattern that specifies e.g. what is asserted or promised. As pro-
fessed intentions can reference other professed intentions, these patterns can serve to
introduce complex behaviors into a system. E.g. once a commitment to complete a task
is fulfilled, the same pattern that assesses this might trigger a new commitment that
obliges the client to pay.

Separation of Concerns for Mechatronic Multi-agent Systems 279

waiting send
after(20ms)

/ directory.CoordinatesMessage

(a) Entry Role

waiting

entry.CoordinatesMessage

(b) Directory Role

Publication

<<agent>>

bs1 : BaseStation
<<agent>>

s1 : Shuttle

<<community>>

c1 : TrafficControlArea

directoryentry

shuttle manager

area

<<membership>> <<membership>>

area

(c) Pattern Definition

Fig. 6. Shuttle Information Publication Pattern.

3.3 Modeling Concerns

We will now present some detailed examples from our specification. Putting safety first,
we start out with the local traffic control communities responsible for avoiding colli-
sions. It is generally recommended to design the safety-critical concerns of a system
first and submit them to formal verification. They can then serve as a safe base for fur-
ther experiments concerning emergent behavior and advanced optimization strategies.

The rules for establishing the membership in a traffic control community have al-
ready been given in Figure 5. The second rule stipulates that upon joining the commu-
nity, a shuttle immediately start executing the publication pattern described in [8] and
illustrated by Figure 6(c): Every 20 time steps, each shuttle sends its position and ve-
locity to the respective base station (see Figure 6(a)), which receives (see Figure 6(b)
and publishes it, and reads the currently available information about the other shuttles.
Failures of any kind trigger an emergency stop. The actual collision avoidance pattern
is defined building on this infrastructure: Shuttles generally head towards their targets
at their desired cruising speed. On the station’s list, they check for shuttles whose time
to (potential) collision falls below a certain limit at the current velocities. Shuttles head-
ing toward them exert a repulsive force that grows as their tau, the distance remaining
over closing speed, decreases. The sum of all forces determines the new velocity and
thus initiates the necessary evasive action. Note that this includes the option to stop
altogether, the trivially safe choice.

This pattern only works for shuttles in the same traffic control community that can
perceive each other via its blackboard. The areas covered by different local communities
overlap in order to avoid collisions upon joining: the layout ensures that the agents are
already acquainted in at least one of the overlapping communities (see Figure 7).

We now turn to the actual purpose of the system, the completion of tasks. As this
concern is not in itself safety-critical, but requires a greater degree of flexibility due
to its complex and more abstract nature, we do not use statecharts, but story-pattern-
based rules to specify its behavioral patterns. A task starts an auction by publishing an
AdvertiseTask message, thus creating and joining a dedicated community (see Figure

280 Florian Klein and Holger Giese

Fig. 7. Base stations with associated areas.

<<community>>

c1 : Auction auction

<<agent>>

t1 : Task
<<assertion>>

msg1 : AdvertiseTask
sender

task

<<create>>
<<membership>>

Fig. 8. A task initiates an auction.

8). The culture of these auction communities governs all the economic aspects of the
system. The AdvertiseTask message contains the intended destination. As it publishes
information about the task’s internal state, it is an assertion.

If a shuttle is interested in the transportation task, it posts a PlaceBid message con-
taining a bid (expressed as energy, which is used as currency) and a proposed deadline
for the completion of the task to the auction community’s message list. This message
both implicitly establishes the shuttle’s membership in the task’s auction community
and represents a commitment to honor the offer it proposes. The actual intention it pro-
fesses is given by the story pattern in the WorkPlanCommitment: delivering the task to
its destination before the promised deadline (see Figure 9).

A task will keep accepting bids for its auction as long as there are containers left.
It constantly ranks all proposals according to its preferences with respect to a low price
or an early time of arrival. As a task needs a number of shuttles equal to the remaining
number of containers, it will always accept the top containers bidders. Thus, the pub-
lication of a RateBids message implies a concrete commitment to load a container into
any top ranked shuttle that presents itself at the task’s position (see Figure 10).

Fig. 9. A shuttle places a binding bid.

Separation of Concerns for Mechatronic Multi-agent Systems 281

Fig. 10. A task ranks all incoming bids.

Fig. 11. Tasks commit to paying once a shuttle has kept its promise.

The act of loading a container into the shuttle entails another, rather important com-
mitment: that is, to unload the container and transfer the promised energy as soon as the
shuttle’s contractual obligations have been fulfilled (see Figure 11).

In this manner, the culture provides a fairly high-level description of the interac-
tions surrounding the assignment and execution of tasks that still offer precise operative
semantics.

The last culture we present pertains to companies. Shuttles may form companies by
posting DeclareAffiliation messages that assert their membership (see Figure 12).

Shuttles within the same company coordinate their behavior with respect to bidding
and strategic movements in a peer to peer fashion. One possible coordination behavior
open to a shuttle that is faced with a large, attractive task is asking for assistance by
issuing a directive. This ’orders’ any shuttle that cares to respond to it to a certain
destination (see Figure 13). If, however, a shuttle replies favorably to the directive, this
is once again a concrete commitment to fulfill a WorkPlanCommitment that needs to be
honored.

There finally is a culture used by the ad-hoc convoys created by shuttles from the
same company (as seen in Figure 7). Each convoy corresponds to a temporary commu-
nity. While member of a convoy, all shuttles repeatedly issue short-term commitments
to maintain a common velocity, which is what enables traveling in such close proximity
without triggering the collision avoidance pattern and prompting evasive action.

<<agent>>

s1 : Shuttle
<<community>>

c1 : Company

<<membership>>

sender <<assertion>>

msg1 : DeclareAffiliation

associate company

affiliation

<<create>>

Fig. 12. Membership in a Company.

282 Florian Klein and Holger Giese

Fig. 13. Shuttle promising assistance.

4 Composition of Concerns

In order to integrate the separate concerns into a coherent whole, they are combined
and reconciled locally in each agent. This step is not trivial, as the agents need to con-
form to the rules, requirements and constraints from each individual concern, without
the benefit of an unambiguous specification concerning the way each rule is to be ful-
filled or what the agents’ internal design should be like. The conceptual specification
merely implies certain very generic assumptions about the cognitive model of an agent.
The physical model serves as an ontology that is to be shared by all agents. A certain
amount of knowledge about the environment is indispensable for the evaluation of the
rules governing the interaction patterns and generating the messages they require. In
this context, the perspective on an agent’s cognition is purely external: Through social
conventions and behaviors, we define a model of what we suppose or require an agent
to know in a specific situation. For example, we require an agent to know about the
positions of all adjacent shuttles as published by the local community. This ’legal per-
spective’, which is inspired by the way human law contains provisions that apply if a
defendant ’knew or had to know’ a fact, allows us to abstract from the agents’ internal
knowledge representation and even give a limited operational definition of such elusive
concepts such as ’truthfulness’. As the analogy implies, this entails that a system either
has to respect the conventions by design or make provisions for handling violations. The
legal perspective also opens up a path to the simulation of incomplete designs: By non-
deterministically choosing between the behavioral options offered by the specification,
the behavior of agents whose logic has not been implemented yet can be approximated.

4.1 Safety-Critical Conflicts

The integration may consequently result in the most general possible agent specification
that conforms with the legal specification, even though designing more specific, elab-
orated agents is entirely acceptable. When dealing with the safety-critical concerns of
the system, a state-model needs to be constructed that does not violate any of the safety
properties required of the system. This often challenging and time-consuming manual
task might be facilitated or even eventually made unnecessary by automated construc-
tion methods and tools. An approach that allows the synthesis of composite behavioral
models out of non-orthogonal concerns without real-time constraints is presented in [9].
Extending this work with respect to the statecharts with real-time annotations used for
the specification of the design patterns seems like a viable option in this context.

Separation of Concerns for Mechatronic Multi-agent Systems 283

Once an integrated specification of the safety-critical real-time concerns of the sys-
tem has been created, its correctness with respect to the original concerns and the re-
quired safety properties can be formally verified. As we present compositional model
checking, the approach used to achieve this, in detail in a dedicated paper [8], we shall
only provide a brief summary in this context, though.

Design patterns [10] for component behavior define roles with well-defined required
real-time behavior and communication channels. Certain safety and liveness properties
that are supposed to hold for the mechatronic system in question are translated into tem-
poral logic and subsequently locally verified for the isolated design pattern by means
of a model checker. The design patterns are then composed in strict accordance with
a set of compositional rules that syntactically only permit consistent component struc-
tures. By locally checking the parallel composition of the required behaviors within
each component, conflicts resulting from the composition can easily be identified. In
this context, first results for the automatic resolution of such conflicts for the untimed
case have been developed [11]. At the cost of the restrictions introduced by the compo-
sitional rules, it is thus possible to avoid the state explosion problem and verify large
systems using only a limited number of efficient, localized checks.

In the current approach, agents concurrently participating in several communities
can be seen as analogous to components implementing several roles safely and con-
sistently and may thus be verified by means of compositional model checking. In our
example, we can verify the system’s safety concerning collisions using this method.

4.2 Commitment Conflicts

As the rule-based specification of the performance-related concerns of the system in-
volves more complex models and predetermines fewer behavioral details, automatic
synthesis of an agent’s behavioral model seems hardly possible in this context. As there
are, often intentionally, many different behaviors that respect the rules, and the con-
struction of an integrated behavioral model that reflects all those possibilities is gener-
ally not possible, we restrict ourselves to uncovering conflicts at the specification level
at this point. Actually designing the agents’ behavior is a manual process that requires
appropriate decisions by the developer at a later time.

When checking for conflicts between different commitments, we can employ ap-
proaches for the verification of graphical specifications based on graph grammars [12]
and their consistency [13]. We start by compiling the hierarchy of the different abstract
categories of commitments found in the shuttle system (see Figure 14(a)). We then fo-
cus on the commitments made by a particular agent type, say shuttles. We check for
the rule in Figure 14(b), i.e. whether a shuttle can issue two concurrent commitments.
As shuttles issue different types of commitments, this is certainly the case. Closer in-
spection does not necessarily indicate conflicts, though, as the level of abstraction is too
generic.

We therefore need to refine our analysis and specifically look at different types of
shuttle commitments. Figure 14(c) proposes the rule that a shuttle should not issue two
commitments concerning its work plan at the same time. As the deadlines are tightly
calculated, fulfilling both commitments will only be possible when their respective des-

284 Florian Klein and Holger Giese

UseCommitment

AgentCommitment

ShuttleCommitment TaskCommitment

WorkPlanCommitment PaymentCommitmentRoleCommitment

(a) Commitment type hierarchy

<<agent>>

s1 : Shuttle
<<intention>> <<commitment>>

cm2 : ShuttleCommitment
<<commitment>>

cm1 : ShuttleCommitment
<<intention>>

(b) ShuttleCommitment Conflict

<<agent>>

s1 : Shuttle
<<intention>> <<commitment>>

cm2 : WorkPlanCommitment
<<commitment>>

cm1 : WorkPlanCommitment
<<intention>>

(c) WorkPlanCommitment Conflict

Fig. 14. Analyzing commitments.

tinations chance to be in close proximity, i.e. the concurrent commitments generally
represent a genuine conflict and should indeed be prohibited.

Analysis reveals that the specification allows the concurrent posting of a PlaceBid
(see Figure 9) and a GrantAssistance (see Figure 13) message, which imply two con-
flicting WorkPlanCommitments. This conflict becomes possible because placing a bid
already constitutes a commitment, whereas the second pattern only checks whether the
shuttle is currently carrying a payload. This problem can easily be remedied by chang-
ing the rules so that a shuttle can only commit to a work plan if there is no preexisting
commitment to another active work plan.

The structured composition between the safety-critical and the performance-related
concerns ensures that the system’s safety properties are not invalidated by the behav-
iors stipulated by rules and commitments. The result of this step is therefore a safe
behavioral specification for the system’s agents, which can be independently verified
by re-running the model checker on the integrated model.

5 Rapid Prototyping

Now that we have modeled and integrated all relevant aspects of the agents’ behavioral
model, we can move on to the experimental evaluation of the system’s emergent behav-
ior. As the system’s safety properties have been formally verified, the focus here is its
efficiency. We first discuss issues related to the operationalization of the specification
and then use it to detect and resolve an emergent pathological behavior.

5.1 Operationalization

The legal perspective primarily provides an ’interface specification’. With respect to an
agent’s cognition, it ultimately needs to be complemented by a more detailed design
dealing with encodings, knowledge representation or complex inference mechanisms.
For the rapid prototyping of the system’s design, i.e. the rules and control structures,

Separation of Concerns for Mechatronic Multi-agent Systems 285

this is neither practical nor actually desirable. A concrete implementation might intro-
duce implicit limiting assumptions not warranted by the specification, whereas nonde-
terministic choice ensures the consideration of all admissible behaviors. Nonetheless,
the agents’ internal cognitive structures and processes may be supplied and elaborated
in a process of stepwise refinement, which is useful for the validation of the completed
parts of an incomplete implementation.

At the level of detail that the specification of the legal perspective provides, it is thus
already possible to implement a prototype to experimentally test the design. Because of
our emphasis on the design principle that every concept needs to be grounded in the
physical domain model, the specification, including the declarative parts, has precise
operational semantics and can directly be turned into an executable model. As code
generation is available for both class diagrams and story patterns, this enables rapid
development cycles of experimental evaluation und subsequent refinement of the design
specification.

Fujaba3 is an open source case tool that has been developed at the University of
Paderborn and is currently being extended in cooperation with several other univer-
sities. It is capable of generating complete executable programs from specifications
consisting of UML class diagrams, statecharts and story patterns. Currently, Java is the
only supported target platform, but efforts to extend the tool to C++ are under way. A
companion application to Fujaba is DOBS (Dynamic Object Browsing System), a visu-
alization tool that dynamically generates interactive object diagrams at run-time using
the Java reflection API. DOBS facilitates the visualization of structures and structural
changes and doubles as a graphical debugger. It was used successfully for the rapid pro-
totyping of production systems [14]. Using Fujaba, the specification outlined above can
be modeled and exported to Java source code. In conjunction with a pre-built generic
simulation framework that provides the domain independent aspects of the simulation,
such as a basic messaging framework, object management and a threading model, this
provides a basic simulation environment for control patterns in the RailCab domain.

5.2 Emergent Pathologies

We can now execute the specification we designed. The safety-critical concerns that
have been formally verified should behave as predicted. The emergent behaviors, how-
ever, might not materialize or turn out in unexpected and undesired ways. Assuming
that each concern is correctly implementing its own requirements, this is usually the
consequence of interference between two or more concerns.

There is no general recipe for resolving conflicts between concerns, as balancing
the different requirements usually depends on domain-specific knowledge. Consider the
case when an expected emergent behavior is modified or inhibited by a safety-critical
concern of the system. Even though safety clearly has the higher priority, only an in-
depth analysis of the conflict can ultimately resolve it: If the safety-critical part of the
system explicitly inhibits the desired behavior, the behavior is either inherently unsafe
and should be dropped, or the constraints of the safety-critical part are too restrictive
and should be relaxed. E.g. a rule forbidding shuttles to move would be quite safe, but

3 http://www.fujaba.de

286 Florian Klein and Holger Giese

(a) Livelock (b) Deadlock (c) Resolution

Fig. 15. Resolution of pathological behavior during task pick-up through priorities.

make the system completely ineffective. If, however, the inhibiting behavior is optional,
the affected concern should be augmented by valid refinements of the respective pattern
that avoid this behavior. We provide an example of this in the following.

The control mechanisms we designed in the previous section generally work as
intended. Most notably, they reliably avoid collisions. When introducing tasks requiring
a large number of shuttles, this in turn leads to a long list of accepted bidders which will
then simultaneously attempt to approach the task entity. Though collisions are avoided,
a pathological behavior ensues: due to the collision avoidance pattern, the interested
shuttles effectively keep each other from approaching the task and start – apparently
aimlessly – moving around it in pulsating circles (see Figure 15(a)), a classic case of
livelock. In a second pathological pattern, a single agent actually reaches the task and
picks up a container, but is then blocked from leaving by the approaching other shuttles
(see Figure 15(b)) in a deadlock situation.

By introducing a new behavioral pattern into the culture of the communities group-
ing the shuttles bidding for the same task, both problems can be remedied. According
to their rank on the list of accepted bidders published on the community’s blackboard,
shuttles are assigned a priority. When two shuttles approaching the same task interfere
with each other, the shuttle with the lower priority will exhibit a stronger evasive im-
pulse than required by the collision avoidance pattern, i.e. it will stop more quickly,
wait and even back away (see Figure 15(c)). The dominant shuttle is still bound by the
collision avoidance pattern, but will not have to perform significant evasive maneuvers
as the conflict is unilaterally resolved by the other shuttle. Conceptually, the new pattern
is thus layered on top of the existing collision avoidance pattern, effectively eclipsing it
but leaving it intact. As the new behavior it specifies is still entirely compatible with the
basic pattern, the safety guarantees made by the collision avoidance pattern still hold.

6 Related Work

The principle of separation of concerns [15] has recently drawn a lot of attention due to
advances like aspect-oriented programming (AOP) [16] or subject-oriented program-
ming (SOP) [17]. The general idea is to consider different aspects or views on the
system in isolation and only compose the overall system design or implementation at
the end of the process. Thus, it becomes possible to focus the development effort on
individual concerns and develop suitable local solutions, and at the same time facilitate
an understanding of the complete system. Cross-cutting concerns like persistence, log-
ging or error handling are frequently cited examples of aspects that are ideally suited
for such treatment. In contrast, the presented approach addresses overlapping functional
concerns and their systematic composition.

Separation of Concerns for Mechatronic Multi-agent Systems 287

Aspect composition is usually carried out at the source code level, whereas our
approach operates at the specification level. One notable exception is subject-oriented
design [18], which also is specification-based. The approach uses individual design
subjects to synthesize object-oriented design models, but is limited to concepts for the
composition of their structural features. Role-based modeling [19] is another related
approach that supports several dedicated views on a system or a component which are
subsequently combined. In addition, a tool for weaving aspects described by means of
UML role models with additional OCL constraints is sketched in [20]. It combines the
idea of aspects at the design level with role modeling. However, the proposed weav-
ing and superposition techniques only address the composition of structure and method
bodies, while the presented approach focuses on the behavioral composition of the re-
active behavior.

Current proposals for a separation of concerns for multi-agent systems [21] largely
focus on exploiting separation of concerns within the individual agents to ease their
implementation. The presented approach is different in using social interaction rules
(cultures) and their structuring (communities) to separate different aspects of the overall
design of a multi-agent system.

With respect to our approach to social structure in multi-agent systems, we see
strong parallels to the current work on organization centered multi-agent systems (OC-
MAS) based on the agent, group, role (AGR) model [22]. Common points include the
predominance of inter-agent aspects and the abstraction from agents’ cognitive abilities.
However, we apply dynamic, intersecting groups as a more general, implementation-
agnostic modeling concept.

Rapid prototyping is a method in wide-spread use in many different areas. In the
specific context of mechatronic systems, it is often concerned with the design and
incremental improvement of control laws (cf. [23]). For this purpose, it is combined
with virtual prototyping (cf. [24]) or, more frequently, dedicated prototyping hardware
(e.g. FPGAs) that allows a quick implementation and reconfiguration. Here, the control
structures and dataflow are usually rather static, however. Software engineering, espe-
cially with proper CASE tool support, lends itself to rapid prototyping (cf. [3]). While
it is generally seen as a useful method for early validation, as recently popularized by
approaches like the test-driven Extreme Programming [25], it is frequently not com-
bined with a formal process. Where applied systematically, it is often primarily seen
as a tool for requirements engineering [26]. It has also been advocated that prototyp-
ing is an appropriate approach to support aspect composition (cf. [27]). In contrast,
the presented approach uses model-based prototyping to identify potential interactions
between agents that need to be coordinated and to explore and refine emergent be-
havior, while conformance of multiple composed concerns within each single agent is
addressed by formal verification techniques.

7 Conclusion and Future Work

We have presented an approach for the design of mechatronic multi-agent systems
which addresses the demand for the integration of partially predictable and partially
emergent behavior. We address the complexity problem by decomposing the system

288 Florian Klein and Holger Giese

into concerns that, to a great extent, allow the requirements and design to be studied
independently. The concerns are realized using social structures (communities) with
behavioral and communicative norms (cultures). The concluding composition of the
concerns is effected in a manner that preserves all required analytic properties but lets
complex emergent behavior further refine them. Conflicts are systematically identified
and resolved at different levels: safety properties and the consistency of commitments
are verified locally for individual agents, whereas emergent pathologies are identified
experimentally using rapid prototyping. The explicit grounding of all abstract concepts,
using the environment model of the mechatronic system under development, results in
the ability to formally reason about required properties and still retain the operational
semantics needed for a rapid prototyping approach to the evaluation of expected emer-
gent properties.

We plan to evaluate the proposed concepts by means of a rapid simulation and
prototyping extension for the Fujaba CASE tool and a series of alternative designs for
large-scale scenarios of the RailCab case study. In its presented form, the approach
exploits some domain specific characteristics of mechatronic systems. We also plan,
however, to extend the approach to purely virtual systems as well, even though clearly
none of their elements are physical. Those elements of the system that possess very
immediate semantics and are directly accessible may be interpreted as a ”physical”
domain model. Due to the proposed grounding, the approach offers a solid unambiguous
base for formalizing the semantics of the more abstract concepts, and we believe that it
can be employed with all the advantages it offers for mechatronic systems.

References

1. Dawson, D., D. Seward, D.B., Burge, S.: Mechatronics and the Design of Intelligent Ma-
chines and Systems. Nelson Thornes (2000)

2. Kennedy, J., Eberhardt, R.C.: Swarm Intelligence. Morgan Kaufmann publishers Inc.: San
Mateo, CA, USA (2001)

3. Mullin, M.: Rapid prototyping for object oriented systems. Addison-Wesley, Reading (1990)
4. Brooks, R.A.: Intelligence Without Reason. In Myopoulos, J., Reiter, R., eds.: Proceed-

ings of the 12th International Joint Conference on Artificial Intelligence (IJCAI-91), Sydney,
Australia, Morgan Kaufmann publishers Inc.: San Mateo, CA, USA (1991) 569–595

5. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A new Graph Rewrite
Language based on the Unified Modeling Language. In Engels, G., Rozenberg, G., eds.:
tagt6. LNCS 1764, Springer (1998)

6. Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by Graph Transforma-
tion : Foundations. World Scientific Pub Co (1997) Volume 1.

7. Singh, M.P.: On Competitive On-Line Algorithms for the Dynamic Priority-Ordering Prob-
lem. IEEE Computer 31 (1998) 40–47

8. Giese, H., Tichy, M., Burmester, S., Schäfer, W., Flake, S.: Towards the compositional verifi-
cation of real-time uml designs. In: Proc. of the European Software Engineering Conference
(ESEC), Helsinki, Finland, ACM Press (2003)

9. Giese, H., Vilbig, A.: Separation of Non-Orthogonal Concerns in Software Architecture and
Design. Technical Report tr-ri-03-238, University of Paderborn, Paderborn, Germany (2003)

10. Giese, H., Burmester, S., Klein, F., Schilling, D., Tichy, M.: Multi-Agent System Design for
Safety-Critical Self-Optimizing Mechatronic Systems with UML. In: OOPSLA 2003 - 2nd
International Workshop on Agent-Oriented Methodologies, Anaheim, CA, USA. (2003)

Separation of Concerns for Mechatronic Multi-agent Systems 289

11. Giese, H., Vilbig, A.: Separation of Non-Orthogonal Concerns in Software Architecture and
Design. Software and System Modeling (SoSyM) (2005) (accepted).

12. Varró, D.: Automated formal verification of visual modeling languages by model checking.
Journal of Software and Systems Modelling (2003) Accepted to the Special Issue on Graph
Transformation and Visual Modelling Techniques.

13. R.Heckel, J.Küster, G.Taentzer: Towards automatic translation of UML models into seman-
tic domains. In: Proceedings of the Applied Graph Transformation (AGT2002) Workshop.
(2002) 11 – 22

14. Köhler, H., Nickel, U., Niere, J., Zündorf, A.: Integrating UML Diagrams for Production
Control Systems. In: Proc. of the 22nd International Conference on Software Engineering
(ICSE), Limerick, Irland, ACM Press (2000) 241–251

15. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Englewood Cliffs, N.J. (1976)
16. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M., Irwin,

J.: Aspect-Oriented Programming. In: Proceedings of the European Conference on Object-
Oriented Programming (ECOOP). Number 1241 in LNCS, Springer Verlag (1997)

17. Harrison, W., Ossher, H.: Subject-oriented programming (a critique of pure objects). In:
OOPSLA’93. Volume 28 of ACM SIGPLAN Notices. (1993) 411–428

18. Clarke, S., Harrison, W., Ossher, H., Tarr, P.: Subject-Oriented Design: Towards Improved
Alignment of Requirements, Design and Code. In: Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, November 1-5, 1999, Denver, Colerado, USA.
(1999) 325–339

19. Reenskaug, T., Wold, P., Lehene, O.A.: Working with Objects: The OOram Software Engi-
neering Method. Addison-Wesley/Manning (1996)

20. Mekerke, F., Georg, G., Franc, R.: Tool Support for Aspect-Oriented Design. In: Proceed-
ings of the Workshops on Advances in Object-Oriented Information Systems (OOIS 2002),
Montpellier, France. Volume 2426 of Lecture Notes in Computer Science., Springer Verlag
(2002) 280 – 289

21. Garcia, A., Silva, V., Chavez, C., Lucena, C.: Engineering multi-agent systems with aspects
and patterns. J. Braz. Comp. Soc. 8 (2002) 57–72

22. Ferber, J., Gutknecht, O., Michel, F.: From Agents to Organizations: An Organizational
View of Multi-agent Systems. In: Agent-Oriented Software Engineering IV, 4th International
Workshop, AOSE 2003, Melbourne, Australia, July 15, 2003, Revised Papers. Volume 2935
of Lecture Notes in Computer Science., Springer Verlag (2003) 214–230

23. Deppe, M., Robrecht, M., Zanella, M., Hardt, W.: Rapid prototyping of real-time control
laws for complex mechatronic systems. In: Proc. of the 12th IEEE International Workshop
on Rapid System Prototyping (RSP 2001), 25-27 June 2001, Monterey, CA, USA, IEEE
Computer Society (2001) 188–193

24. Schupp, G., Jaschinksi, A.: Virtual prototyping: the future way of designing railway vehicles.
International Journal of Vehicle Design 22 (1999) 93–115

25. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley Profes-
sional, Reading (1999)

26. Connell, J., Shafer, L.: Object-Oriented Rapid Prototyping. Yourdon Press, Englewood
Cliffs, NJ (1995)

27. Popovici, A., Gross, T., Alonso, G.: Dynamic weaving for aspect-oriented programming. In:
Proceedings of the 1st international conference on Aspect-oriented software development,
ACM Press (2002) 141–147

Author Index

Agha, Gul 236
Ahmed, Amr 236
Alencar, Paulo 52

Bartolini, Claudio 213
Bastos, Lúcia R.D. 85
Bastos, Ricardo Melo 19
Blois Ribeiro, Marcelo 19

Castro, Jaelson F.B. 85
Choren, Ricardo 198
Cossentino, Massimo 36

de Barros Costa, Evandro 162
Dias da Silva, Leandro 162
Do, T. Tung 70

Faulkner, Stéphane 70

Garcia, Alessandro 52, 121
Giese, Holger 272

Hameurlain, Nabil 180
Henderson-Sellers, Brian 1
Holvoet, Tom 104

Jang, Myeong-Wuk 236
Jennings, Nicholas R. 213
Julien, Christine 254

Klein, Florian 272
Kolp, Manuel 70
Kulesza, Uirá 52, 121

Lucena, Carlos 52, 121, 198

Oliveira de Almeida, Hyggo 162

Payton, Jamie 254
Perkusich, Angelo 162
Preist, Chris 213

Roman, Gruia-Catalin 254

Seidita, Valeria 36
Shan, Lijun 144
Sibertin-Blanc, Christophe 180
Steegmans, Elke 104

Weyns, Danny 104

Zhu, Hong 144

	Frontmatter
	Agent Methodologies and Processes
	From Object-Oriented to Agent-Oriented Software Engineering Methodologies
	MASUP: An Agent-Oriented Modeling Process for Information Systems
	Composition of a New Process to Meet Agile Needs Using Method Engineering
	A Generative Approach for Multi-agent System Development

	Requirements Engineering and Software Architectures
	A Social-Driven Design of e-Business System
	Systematic Integration Between Requirements and Architecture
	Integrating Free-Flow Architectures with Role Models Based on Statecharts
	Aspectizing Multi-agent Systems: From Architecture to Implementation

	Modeling Languages
	CAMLE: A Caste-Centric Agent-Oriented Modelling Language and Environment
	A Formal Approach for the Modelling and Verification of Multiagent Plans Based on Model Checking and Petri Nets
	Specification of Role-Based Interactions Components in Multi-agent Systems
	The ANote Modeling Language for Agent-Oriented Specification

	Dependability and Coordination
	A Software Framework for Automated Negotiation
	Efficient Agent Communication in Multi-agent Systems
	Adaptive Access Control in Coordination-Based Mobile Agent Systems
	Separation of Concerns for Mechatronic Multi-agent Systems Through Dynamic Communities

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

