Ricardo Choren
Alessandro Garcla
Carlos Lucena
Alexander Romano

—

-
=
o

Software E
Multi-Ager

Research Issues

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3390

Ricardo Choren Alessandro Garcia
Carlos Lucena Alexander Romanovsky (Eds.)

Software Engineering for
Multi-Agent Systems 111

Research Issues
and Practical Applications

@ Springer

Volume Editors

Ricardo Choren

Military Institute of Engineering

Systems Engineering Department

Pc¢a General Tibtircio, 80 - Praia Vermelha, 22290-270 - Rio de Janeiro/RJ - Brazil
E-mail: choren@de9.ime.eb.br

Alessandro Garcia

Carlos Lucena

Pontifical Catholic University of Rio de Janeiro

Computer Science Department

Rua Marqués de Séo Vicente, 225 - Gavea, 22451-900, Rio de Janeiro/ RJ, Brazil
E-mail: {afgarcia, lucena} @inf.puc-rio.br

Alexander Romanovsky

University of Newcastle upon Tyne, School of Computing Science
Newcastle upon Tyne, NE1 7RU, UK

E-mail: alexander.romanovsky @ncl.ac.uk

Library of Congress Control Number: 2005921208

CR Subject Classification (1998): D.2,1.2.11, C.2.4, D.1.3, H.5.3

ISSN 0302-9743
ISBN 3-540-24843-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11392392 06/3142 543210

Foreword

The increasing cooperation and convergence of various kinds of computing
entities, i.e., computers, cellphones, personal digital assistants, house appliances,
etc., is fundamentally changing the way we view computers and software. The
size, increasing complexity and the great potential of future applications for
change (e.g., community support, collaborative work and supervision) make
centralized and direct control by the programmer nearly impossible. It is thus
natural to delegate more autonomy and initiative to various software modules and
to provide them with cooperation abilities. Multi-agent systems have been
proposed as a conceptual framework to help design and construct such large-scale
autonomous and cooperative computing systems.

We can analyze multi-agent systems as a programming paradigm in terms of
the evolution of programming in general. We may for instance observe three
dimensions of progress: (1) higher levels of abstraction for entities processed
or/and exchanged — from bits, and then objects and messages, to agents,
intentions and plans; (2) later binding times, i.e., deferring the decision regarding
what actual code is to be executed — from procedure call, and then method
invocation, to action selection by an autonomous agent; and (3) more flexible
coupling between software modules — from procedures, and then objects,
components and events, to knowledge-based organizations of agents. Multi-agent
systems may thus be seen as an integral part of the evolution of programming.

There is currently a growing body of experience on how to construct multi-
agent architectures and platforms based on more conventional technology,
objects, Java and components. Interoperability has recently been an important
concern, notably through the FIPA Agent Communication Language standard,
which builds on object interoperability standards (such as CORBA) and extends
their levels of abstraction (e.g., expliciting interaction patterns and protocols, as
well as ontologies of knowledge, within a communication). We also see now
various attempts and studies for using novel approaches and technologies such as
Model Driven Architecture (MDA) and Aspect-Oriented Programming (AOP) in
the design and construction of multi-agent systems. Last, the inherent
decentralization and autonomy of multi-agent systems also raise new questions
about dependability and security.

From the software engineering perspective, we believe the challenges are
perhaps even bigger. The decentralized, autonomous and adaptive nature of
agents, combined with the large scale, mobility and general dynamicity of their
environment support (e.g., ad hoc networks, with associated security and
robustness concerns), make it difficult to rely on traditional assumptions of
software predictability. In other words, the traditional “defensive/pessimistic”
approach — statically safeguarding as much as possible the behavior of the
program (through specifications, types, assertions, etc.) — reaches its limits and
should be complemented (and not replaced!) by a “proactive/optimistic”

VI Foreword

approach, providing the agents with abilities to adapt to unexpected individual
and collective behaviors. Another concern is to include also the users, as agents,
from the initial stages of the design. Indeed, our ultimate goal is to provide a
symbiotic collaboration between artificial agents and human agents, as opposed to
confining users, either as supervisers with explicit control or as end-users with
little initiative.

For designing practical methodologies, there is still a debate in the community
on whether agent-oriented methodologies should be affiliated to current (object-
oriented) methodologies or should be deeply restated (for instance by focusing
analysis on social concepts such as roles and organization rather than on
individual objects or agents). In any case, future methodologies will still need
steps (such as analysis, design, modeling, measurements, etc.) as well as related
techniques (such as requirements analysis, meta-modeling, notations and metrics).
As a consequence, there is currently much activity in studying how such steps or
techniques may be partly reused from current technology, adapted or completely
rethought.

As a conclusion, in order to achieve these challenges, we need to organize a
research community at the crossing of software engineering, programming and
multi-agent systems, with a concern for scalability of solutions. This book, the
third volume of the very good series on “Software Engineering for Large-Scale
Multi-agent Systems,” includes several important studies and proposals along the
lines of the various perspectives we just sketched, and thus represents a very good
contribution to that research agenda.

Jean-Pierre Briot
Paris, December 2004

Preface

Advances in networking technology in the last few years have turned agent tech-
nologies into a promising paradigm for engineering complex distributed software
systems. So far they have been applied to a wide range of application domains,
including e-commerce, human-computer interfaces, telecommunications, and
concurrent engineering. Multi-agent systems (MASs) and their underlying theo-
ries provide a more natural support for ensuring important properties, such as
autonomy, mobility, environment heterogeneity, organization and openness. Nev-
ertheless, a software agent is an inherently more complex abstraction, posing new
challenges for software engineering. Without adequate development techniques
and methods, MASs will not be sufficiently dependable, trustworthy and extensi-
ble, thus making their wide adoption by the industry more difficult.

Large MASs are complex in many ways. When a set of agents interact over
heterogeneous environments, several problems emerge. This makes their coordi-
nation and management more difficult and increases the probability of excep-
tional situations, security holes and unexpected global effects. Moreover, as users
and software engineers delegate more autonomy to their MASs and put more trust
in their results, new concerns arise in real-life applications. Yet many of the exist-
ing agent-oriented solutions are far from ideal; in practice, systems are often built
in an ad hoc manner, are error-prone, not scalable, not dynamic, and not generally
applicable to large-scale environments. If agent-based applications are to be suc-
cessful software engineering approaches will be needed to enable effective scal-
able deployment.

The papers selected for this volume present advances in software engineering
approaches to the development of realistic multi-agent systems, demonstrating a
broad range of techniques and methods used to cope with the complexity of sys-
tems like these and to facilitate the construction of high-quality MASs. Further-
more, the power of agent-based software engineering is illustrated using examples
that are representative of real-world applications. These papers describe experi-
ences and techniques associated with large MASs in a variety of problem do-
mains.

A comprehensive selection of case studies and software engineering solutions
for MASs applications, this book provides a valuable resource for a vast audience
of readers. The main target readers for this book are researchers and practitioners
who want to keep up with the progress of software engineering in MASs, indi-
viduals keen to understand the interplay between agents and objects in software
development, and those interested in experimental results from MAS applications.
Software engineers involved with particular aspects of MASs as part of their work
may find it interesting to learn about using software engineering approaches in
building real systems. A number of chapters in the book discuss the development
of MASs from requirements and architecture specifications to implementation.

VII Preface

One key contribution of this volume is the description of the latest approaches to
reasoning about complex MASs.

This book brings together a collection of 16 papers addressing a wide range of
issues in software engineering for MASs, reflecting the importance of agent prop-
erties in today’s software systems. The papers presented describe recent devel-
opments in specific issues and practical experience. The research issues addressed
include (i) integration of agent abstractions with other software engineering ab-
stractions and techniques (such as objects, roles, components, aspects and pat-
terns), (ii) specification and modelling approaches, (iii) innovative approaches for
security and robustness, (iv) MAS frameworks, and (v) approaches to ensuring
quality attributes for large-scale MASs, such as dependability, scalability, reus-
ability, maintainability and adaptability. At the end of each chapter, the reader
will find a list of interesting references for further reading. The book is organized
into four parts, which deal with topics related to (i) Agent Methodologies and
Processes, (i1) Requirements Engineering and Software Architectures, (iii) Model-
ling Languages, and (iv) Dependability and Coordination.

This book is a continuation of two previous volumes!-2. The main motivation
for producing this book was the 3rd International Workshop on Software Engi-
neering for Large-Scale Multi-agent Systems (SELMAS 2004)3, organized in as-
sociation with the 26th International Conference on Software Engineering, held in
Edinburgh, UK, in May 2004. SELMAS 2004 was our attempt to bring together
software engineering practitioners and researchers to discuss the multifaceted is-
sues arising when MASs are used to engineer complex systems. It was later de-
cided to extend the workshop scope, inviting several of the workshop participants
to write chapters for this book based on their original position papers, as well as
other leading researchers in the area to prepare additional chapters. Following an
extensive reviewing process involving more than 40 reviewers, we selected the
papers that appear in this volume.

We are confident that this book will be of considerable use to the software en-
gineering community by providing many original and distinct views on such an
important interdisciplinary topic, and by contributing to a better understanding
and cross-fertilization among individuals in this research area. It is only natural
that the choice of contributors to this book reflects the personal views of the book
editors. We believe that, despite the volume of papers and work on software engi-
neering for MASs, there are still many interesting challenges to be explored. The
contributions to this book are only the beginning. Our thanks go to all our au-

! Garcia, A., Lucena, C., Castro, J., Zambonelli, F., Omicini, A. (eds.): Software Engineering

for Large-Scale Multi-agent Systems. Lecture Notes in Computer Science, vol. 2603,
Springer, April 2003.

Lucena, C., Garcia, A., Romanovsky, A., Castro, J., Alencar, P. (eds.): Software Engineering
for Multi-agent Systems II. Lecture Notes in Computer Science, vol. 2940, Springer, Febru-
ary 2004.

Choren, R. el al.: Software Engineering for Large-Scale Multi-agent Systems — SELMAS
2004 (Workshop Report). ACM Software Engineering Notes, Vol. 29, N°. 5, September
2004.

Preface IX

thors, whose work made this book possible. Many of them also helped during the
reviewing process. We would like to express our gratitude to Alfred Hofmann
from Springer for recognizing the importance of publishing this book. We also
acknowledge the support and cooperation of Anna Kramer and Judith Freuden-
berger, who helped us in the preparation of this volume. In addition, we would
like to thank the members of the Evaluation and Program Committee who were
generous with their time and effort when reviewing the submitted papers.

December 2004 Ricardo Choren
Alessandro Garcia

Carlos Lucena

Alexander Romanovsky

Evaluation and Program Committee

P. Alencar (University of Waterloo, Canada)

B. Bauer (Technische Universitit Miinchen, Germany)

P. Bresciani (Universita degli Studi di Trento, Italy)

M. Brian Blake (Georgetown University, USA)

L. Boloni (University of Central Florida, USA)

J.P. Briot (CNRS, France)

J. Castro (UFPE, Brazil)

R. Choren (IME, Brazil)

S. Cost (University of Maryland, USA)

L.M. Cysneiros (York University, Canada)

J. Debenham (University of Technology, Australia)

R. de Lemos (University of Kent, UK)

M. d’Inverno (University of Westminster, UK)

C.A. Fernandez (Universidad Politécnica de Madrid, Spain)
M. Fredriksson (Blekinge Tekniska Hogskola, Sweden)

A. Garcia (PUC-Rio, Brazil)

P. Giorgini (Universita degli Studi di Trento, Italy)

M.P. Gervais (Laboratoire d'Informatique de Paris 6, France)
M.P. Gleizes (IRIT, France)

Z. Guessoum (Laboratoire d'Informatique de Paris 6, France)
B. Henderson-Sellers (University of Technology, Australia)
T. Holvoet (Katholieke Universiteit Leuven, Belgium)
M.N. Huhns (University of South Carolina, USA)

E. Huzita (UEM, Brazil)

C. Jonker (Vrije Universiteit, The Netherlands)

C. Lucena (PUC-Rio, Brazil)

M. Mamei (Universita di Modena e Reggio Emilia, Italy)
A. Omicini (Universita di Bologna, Italy)

A.D. Pace (UNICEN, Argentina)

A. Rashid (Lancaster University, UK)

A. Romanovsky (University of Newcastle upon Tyne, UK)
G. Rossi (Universidad Nacional de La Plata, Argentina)

C. Rubira (UNICAMP, Brazil)

V.T. Silva (PUC-Rio, Brazil)

A.v. Staa (PUC-Rio, Brazil)

M. Stal (Siemens, Germany)

W. Truszkowski (NASA, USA)

M. Weiss (University of Aberdeen, UK)

A. Zisman (City University, UK)

Table of Contents

Agent Methodologies and Processes

From Object-Oriented to Agent-Oriented Software Engineering Methodologies .. 1
Brian Henderson-Sellers

MASUP: An Agent-Oriented Modeling Process for Information Systems 19
Ricardo Melo Bastos and Marcelo Blois Ribeiro

Composition of a New Process to Meet Agile Needs
Using Method Engineering 36
Massimo Cossentino and Valeria Seidita

A Generative Approach for Multi-agent System Development 52
Uird Kulesza, Alessandro Garcia, Carlos Lucena, and Paulo Alencar

Requirements Engineering and Software Architectures

A Social-Driven Design of e-Business System. 70
Manuel Kolp, T. Tung Do, and Stéphane Faulkner

Systematic Integration Between Requirements and Architecture 85
Liicia R.D. Bastos and Jaelson F.B. Castro

Integrating Free-Flow Architectures with Role Models Based on Statecharts 104
Danny Weyns, Elke Steegmans, and Tom Holvoet

Aspectizing Multi-agent Systems: From Architecture to Implementation 121
Alessandro Garcia, Uird Kulesza, and Carlos Lucena

Modeling Languages

CAMLE: A Caste-Centric Agent-Oriented Modelling Language
and Environment 144
Lijun Shan and Hong Zhu

A Formal Approach for the Modelling and Verification of Multiagent Plans

Based on Model Checking and Petri Nets 162
Hyggo Oliveira de Almeida, Leandro Dias da Silva, Angelo Perkusich,
and Evandro de Barros Costa

Specification of Role-Based Interactions Components in Multi-agent Systems ... 180
Nabil Hameurlain and Christophe Sibertin-Blanc

XII Table of Contents

The ANote Modeling Language for Agent-Oriented Specification 198
Ricardo Choren and Carlos Lucena

Dependability and Coordination

A Software Framework for Automated Negotiation. 213
Claudio Bartolini, Chris Preist, and Nicholas R. Jennings

Efficient Agent Communication in Multi-agent Systems 236
Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

Adaptive Access Control in Coordination-Based Mobile Agent Systems 254
Christine Julien, Jamie Payton, and Gruia-Catalin Roman

Separation of Concerns for Mechatronic Multi-agent Systems
Through Dynamic Communities.uiuitnininn ... 272
Florian Klein and Holger Giese

Author Index 291

From Object-Oriented
to Agent-Oriented Software Engineering Methodologies

Brian Henderson-Sellers

University of Technology, Sydney, NSW 2007 Australia
brian@it.uts.edu.au

Abstract. Object-oriented methodologies are well-established and have been
used as one input for the creation of methodologies suitable to support the deve-
lopment of agent-oriented software systems. While these agent-oriented (AO)
methodologies vary in style and, particularly, in heritage and often with a spe-
cific focus (either in terms of domain, application style or lifecycle coverage),
for industry adoption it is essential that full lifecycle coverage is achieved in a
“standardized” way. One way of achieving some degree of standardization yet
maintaining full flexibility is through the use of situational method engineering
(SME). With this approach, method fragments are created and stored in a repos-
itory. For an individual software development, a subset of these is then selected
from the repository and a project-specific (or sometimes organization-specific)
methodology is constructed. Here, we demonstrate how this might work by
using the OPEN approach that already provides a significant coverage of AO
method fragments as well as more traditional OO and pre-OO fragments. Those
newer fragments supporting AO approaches are detailed, describing, as they do,
emerging substantial support for AO methodological creation from the OPEN
repository in an SME context.

1 Introduction

Interest in the creation of appropriate software engineering methodologies for sup-
porting the development of agent-oriented (AO) software systems has shown a rapid
increase recently. For many AO methodologists, the object paradigm is seen as a
useful precursor. Consequently, many AO methodologies exhibits traits inherited
from earlier object-oriented (OO) methodologies — either explicitly or implicitly. On
the other hand, some AO methodology writers deny any such influence.

In most cases, the meaning of “AO” in the term “agent-oriented methodology”
means a methodology to be used for building agent-oriented software systems. How-
ever, in one case (Tropos, e.g. Bresciani et al., 2004), it is used to mean that the agent
concept is used in the conceptual underpinning of the methodology itself.

It should be noted that although we use the term “methodology”, which means a
full description of process, people, social structures, project management, modelling
language, products etc. (e.g. Henderson-Sellers, 1995; Rolland and Prakash, 1996),
some of the methodologies referred to in this paper provide only partial support —
perhaps in terms of only addressing analysis and design (as does Gaia e.g.
Wooldridge et al., 2000; Zambonelli et al., 2003) or omitting any discussion of the

R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 1-18, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 Brian Henderson-Sellers

“people element”, for instance, MaSE (DeLoach, 1999) or AOR (Wagner, 2004), the
latter being primarily a modelling language.

In this paper, we examine the evolution of agent-oriented methodologies and their
relationship to earlier AO and OO methodologies leading to suggestions for future
AO methodology support that may be of interest to industry. In Section 2, we analyze
the various extant AO methodologies in terms of their OO/non-OO lineage. In Section
3 we debate the difference between a “one-size-fits-all” methodological approach
versus a more flexible approach, the latter using situational method engineering
(SME). The SME approach is then illustrated by a case study (Section 4) using
the OPEN metamodel and repository of method fragments (Graham et al., 1997;
Henderson-Sellers et al., 1998), recently extended to offer wide support for agents.

2 Methodology Genealogy

The development of AO methodologies has taken many routes. Some methodologists
have based their methodological approach on an Artificial Intelligence or Knowledge
Representation; others have commenced with basic definitions of objects and then
asked what modifications are necessary to support agents; others have commenced
with an established OO methodology and asked how agent support can be grafted on.

—~ Tropos Massive Nemo
MAS -CommonKADS
(+AI/KE) Cassiopeia

INGENIAS MaSE

N SODA
Kendall
MESSAGE Adelfe
etal.
AOR —RAP AATL Gaia

VARV

RUP OMT Fusion

o
PASSI / \‘ Prometheus

Fig. 1. Genealogy of various AO methodologies and their relationships to OO methodologies

Figure 1 graphically depicts some of these linkages and influences. OO method-
ologies such as RUP (Kruchten, 1999), OMT (Rumbaugh et al., 1991) and Fusion
(Coleman et al., 1994) have all been used by various AO methodology groups as the
basis for agent-oriented extensions. RUP has formed the basis for Adelfe (Bernon et
al., 2002) and also for MESSAGE (Caire et al., 2001), which, in turn, is the basis for
INGENIAS (Pavon et al., 2005) and, more recently, RUP has been a useful input to
RAP (Wagner and Taveter, 2005), a direct descendant of AOR (Wagner, 2003). OMT
is said to have directly influenced MAS-CommonKADS (Iglesias et al., 1996, 1998),
which merges these OO ideas with concepts from Al and Knowledge Engineering, as

From Object-Oriented to Agent-Oriented Software Engineering Methodologies 3

well as the AAII approach (Kinny et al., 1996) which, in turn, is said to have been a
major influence on MaSE (DeLoach, 1999; Wood and DeLoach, 2000). Fusion has
strongly influenced Gaia which, in turn, has influenced SODA (Omicini, 2000).
Prometheus (Padgham and Winikoff, 2002a,b) is a fully AO methodology but states
that one should use UML-style diagrams when appropriate rather than “reinvent the
wheel”. All of these AO methodologies are “standalone” — effectively “one size fits
all” — approaches.

Other methodologies in Figure 1 do not acknowledge any influence from any OO
approach — although clearly some have had an implicit influence. Tropos is said to be
based on i* (Yu, 1995) and has a distinct strength in early requirements modelling. Its
use of the i* modelling language gives it a different look and feel to those that use
Agent UML (AUML: Odell et al., 2000) as a notation. It also means that the non-OO
mindset permits users of Tropos to take a unique approach to the modelling of agents
in the methodological context.

There is no obvious, explicit evidence of an OO influence in the published versions
of Nemo (Huget, 2002), MASSIVE (Lind, 2001), Cassiopeia (Collinot ez al., 1996;
Collinot and Drogoul, 1998), PASSI (Cossentino and Potts, 2002; Burrafato and

Cossentino, 2002)! and the work of Kendall et al. (1996). CAMLE (Shan and Zhu,
2004) does, however, draw some parallels, particularly between a CAMLE caste and
an OO class and with respect to UML’s composition and aggregation relationships.

Several authors have made direct comparisons of these (and other) AO methodolo-
gies. Cernuzzi and Rossi (2002) proposed a framework containing a set of internal
attributes (autonomy, reactivity, proactiveness and mental notions), a set of interac-
tion attributes (social ability, interaction with the environment, multiple control, mul-
tiple interests and subsystems interaction) and four other requirements (modularity,
abstraction, a system view and communication support). They used this framework in
a case study to evaluate a BDI focussed methodology (Kinny et al., 1996, variously
referred to as AAIl or BDIM) and MAS-CommonKADS (Iglesias et al., 1998) both
qualitatively and, with an appropriate set of metrics, quantitatively. This study and
other comparative evaluations of both AO and OO methodologies were used as input
to the framework proposals of Dam and Winikoff (2004) who proposed four catego-
ries: concepts, modelling language, process and pragmatics. Their contribution is that
the evaluation was not only done by the authors but by surveying a set of students
who had used the case study methodologies (MaSE, Prometheus and Tropos) on a
design problem of a mobile travel planner. The same four categories were used by
Sturm and Shehory (2004) and used to evaluate Gaia (as a single example) using a
seven point quantitative metric scale. The framework of Tran et al. (2003) also has
four categories but these are said to be process-related (15 criteria), technique-related
(5), model-related (23) and other supportive features (8). The framework was applied
by Tran et al. (2004b) to five well-referenced AO methodologies — namely MaSE,
Gaia, BDIM, Prometheus and MAS-CommonKADS. Different ordinal scales are used
for the several criterion sets. A more extensive set of results (the evaluation of 10
AOSE methodologies) is found in Tran and Low (2005).

' A more recent manuscript in preparation does, in fact, acknowledge influences from object
technology.

4 Brian Henderson-Sellers

3 Specific or General Methodologies?

To support any software development, there would appear to be (at least) three op-
tions: (i) create a suite of inflexible methods, each of which is highly tuned to specific
operating conditions; (ii) create a single all-inclusive methodology and then permit
some removal of unwanted elements (sometimes known as method tailoring); and (iii)
create not a methodology but a methodological framework underpinned by the con-
cepts of situational method engineering (see Section 3.2 below) that permits the con-
struction of multiple, specifically configured methodologies — one for each particular
operating situation.

Using a suite of methodologies provides perfect alignment with the problem at any
given time but, as situations change, provides no route for migration from the current
methodology to a second in the suite, however perfect that second one might be for
the new problem space. Thus, there is no possibility of encouraging the valuable
process of Software Process Improvement or SPI, as advocated by e.g. CMM or
SPICE (ISO 15504) because there is no route between these methodological “islands”
(Figure 2).

Process A Process B Process C etc.
Suitable for Suitable for Suitable for
Al, A2 B1, B2 C1,C2

Fig. 2. “Islands” of methodology provide no route to migrate between them and hence there is
no potential for SPI

Using a comprehensive methodology typically requires users to understand all
elements of the approach before beginning a reduction programme i.e. eliminating the
elements of this comprehensive methodology that are not needed for this specific
project. This can mean wasted effort and such so-called heavyweight methodologies
are often seen as anathema to contemporary problems (Avison and Fitzgerald, 2003)
which are often said to require more “agile” approaches to software development.

In many ways, the “best of both these worlds” can be achieved through the third
option and that is the one we will explore in this paper in more detail below
(Section 3.2) following a brief overview of some of the AO methodology “islands”
(Section 3.1) currently available for use.

3.1 Specific AO Methodologies

Many individualistic methodologies have been formulated and published. Here, we
review briefly a small selection, focussing on those that have already been analyzed in
order to extract method fragments (see Sections 3.2 and 4). Each description below
emphasizes the agent-oriented aspects of that methodology, needed to go beyond the
basic object-oriented concepts that many of them utilize.

From Object-Oriented to Agent-Oriented Software Engineering Methodologies 5

Prometheus (Padgham and Winikoff, 2002a,b) is an agent-oriented methodology
that reuses as many appropriate elements as possible from object technology includ-
ing several UML diagram types. In the first phase (of three) of systems specification,
the basic functionality of the system is identified, using percepts (inputs), actions
(outputs) and any necessary shared data storage. This is followed by the architectural
design stage; here, the agents and their interactions are identified. Finally, there is the
detailed design phase in which the internal details of each agent are addressed.

MASE (DeLoach, 1999; Wood and DeLoach, 2000) is drawn from the legacy of
object-oriented methodologies such as OMT together with influences from the more
recent UML as well as pre-existing work in the realm of agents and multiagent sys-
tems e.g. Kinny et al. (1996) and Kendall and Zhao (1998). It aims to guide the de-
signer through the multiagent-system development process from an initial system
specification to a set of formal design documents. It has two phases: analysis and
design. The former deals with the specification of system goals, use cases, sequence
diagrams, roles and tasks, while the latter uses the analysis phase’s outputs to design
agent classes, agent interactions and agents’ internal components. It is also well sup-
ported by a software tool.

Gaia (Wooldridge et al.,, 2000) views the process of multi-agent system (MAS)
development as a process of organizational design, where the MAS is modelled as an
organized society with agents playing different roles. The methodology allows a de-
veloper to move systematically from a statement of requirements to a design that is
sufficiently detailed that it can be implemented directly. It supports both macro (so-
cietal) and micro (agent) aspects of MAS design, and is also neutral to both applica-
tion domain and agent architecture. The newest version of Gaia (Zambonelli et al.,
2003) extends the original version with various organizational abstractions, enabling
it to be used for the design of open MAS (which was not achievable previously).

Cassiopeia (Collinot et al., 1996) provides an (arguably incomplete) methodologi-
cal framework for the development of collective problem-solving MASs. Cassiopeia
assumes that, although the agents can have different aims, the goal of the designer is
to make them behave cooperatively. It adopts an organization-oriented approach to
MAS design, as do some other AO approaches, viewing an MAS as an organization
of agents that implement/encapsulate roles. These roles not only reflect the agents’
individual functionality, but also the structure and dynamics of the organization of the
MAS.

MAS-CommonKADS (Iglesias et al., 1998) is an agent-oriented methodology that
supports the development of MAS from the conceptualization phase through to a
detailed design that can be directly implemented. The methodology integrates tech-
niques from a well-known knowledge-engineering methodology, CommonKADS
(Schreiber et al., 1994), with those from OO methodologies (e.g. OMT, OOSE and
RDD) and protocol engineering. The main modelling concepts in MAS-
CommonKADS are agent, knowledge, organization and coordination.

Agent Factory (Collier et al, 2003, 2004) is a four-layer framework for designing,
implementing and deploying multi-agent systems. It contains (i) an agent-oriented
software engineering methodology, (ii) a development environment, (iii) a FIPA-
compliant runtime environment and (iv) an agent programming language (AF-APL);
with a stated preference for the BDI agent architecture according to the analysis of
(Luck et al., 2004). By employing UML and Agent UML, the Agent Factory method-

6 Brian Henderson-Sellers

ology provides a visual, industry-recognized notation for its models - regarded by its
authors as a major advantage over other approaches, such as Gaia (Wooldridge et al.,
2000) and Tropos (Bresciani et al., 2004), which have non-standard (i.e. non-UML
compliant) notations. These models are capable of promoting design reuse (via the
central notion of role) and being directly implemented by automated code generation
(Collier et al., 2004).

CAMLE (Shan and Zhu, 2004) is described as a caste-centric agent-oriented model-
ling language and environment. It is caste-centric because castes, analogous to classes
in object-orientation, are argued to provide the major modelling artefact over the
lifecycle by providing a type system for agents. A significant difference is claimed
between castes and classes: while objects are commonly thought of as statically clas-
sified (i.e. an object is created as a member of a class and that is a property for its
whole lifetime), agents in CAMLE can join and leave castes as desired, thus allowing
dynamic reclassification. CAMLE provides a graphical notation for caste models
(similar to class models in OO methodologies), collaboration models and behaviour
models. Caste diagrams also include support for the non-OO relationships of congre-
gation, migration and participation. CAMLE relies heavily on the fact that an infor-
mation system already exists when a new project is started, so that the new system is
designed as a modification to the current one. Although this situation is indeed com-
mon, the construction of systems from scratch also happens. CAMLE, however,
seems to ignore this possibility.

Tropos (Perini et al., 2001; Castro et al., 2002; Bresciani et al., 2004) was designed
to support agent-oriented systems development with a particular emphasis on the
early requirements engineering phase. The stated aim was to use agent concepts in the
description and definition of the methodology rather than using OO concepts in a
minor extension to existing OO approaches. Tropos takes the BDI model (Rao and
Georgeff, 1995; Kinny et al., 1996), formulated to describe the internal view of a
single agent, and applies those concepts to the external view in terms of problem
modelling as part of requirements engineering. It also relies heavily on the i* frame-
work of Yu (1995) for concepts and notation.

In summary, there is a tendency to reuse significant portions of object-oriented
methodological approaches, supplementing them with a new focus on organizations,
social interactions, proactivity and roles. There is still discussion about the extent to
which UML can be useful. Several AO methodologies use existing UML or, often,
AUML diagrams but, at the same time, find deficiencies for which they supply new
diagrammatic representations. In particular, there is still argument as to whether an
agent concept could be added to the UML metamodel simply as a subtype of the Clas-
sifier metaclass or whether a totally different conceptualization is needed (e.g., Silva
and Lucena, 2004).

3.2 General Methodologies — The Use of Situational Method Engineering

In contrast to an individual AO methodology, we now explore the third option of
creating a methodological framework. In particular, in this section we outline
the concepts of situational method engineering or SME (Kumar and Welke, 1992;
Brinkkemper, 1996; Ter Hofstede and Verhoef, 1997).

From Object-Oriented to Agent-Oriented Software Engineering Methodologies 7

SME suggests that the elements of a methodological can be modularized and en-
capsulated as “method fragments” (van Slooten and Hodes, 1996). The method frag-
ments can then be connected to form larger fragments and finally the whole method-
ology. There is thus no initial or default methodology stored in the method repository
or methodbase (e.g. Brinkkemper, 1996; Ralyté and Rolland, 2001) and indeed the
methodbase may contain conceptual fragments originating from various sources.
Ideally, the method fragments should all be instances of a concept captured in a
metamodel underpinning the methodbase (Ralyté and Rolland, 2001; Henderson-
Sellers, 2003). The metamodel provides essentially a set of rules and prescriptive
descriptions of all the kinds of method elements permissible within the methodbase.

The challenge for the method engineer is to select appropriate and compatible
fragments and to construct the final methodology (e.g. Wistrand and Karlsson, 2004).
This may be from scratch or as an extension to an existing methodology (Ralyté er al.,
2003). Thus, construction guidelines (e.g. Klooster et al., 1997; Brinkkemper et al.,
1998; Rolland er al., 1999; Ralyté and Rolland, 2001; Ralyté ef al., 2004) are critical
in the SME approach. Creating a project-specific methodology is currently one of the
more difficult and time-consuming jobs of the method engineering approach, since
the method engineer has to understand the methodology, the organization, the envi-
ronment and the software project in order to select the appropriate fragments from the
repository to use on the project as well as understanding the rules of construction.
Traditionally, this process is carried out using predefined organizational requirements
and the experience and knowledge of the method engineer or process engineer (e.g.
Fitzgerald et al., 2003), although significant tool support is likely in the near future
(Saeki, 2003; Wistrand and Karlsson, 2004).

4 Case Study: Supporting Agent-Oriented Software Engineering
Using the OPEN Framework

One example of a method engineering approach that can encompass both object-
oriented and agent-oriented methodological thinking is the OPEN Process Framework
or OPF (Firesmith and Henderson-Sellers, 2002). OPEN adopts a framework ap-
proach based on an underpinning metamodel, and has recently been extended from its
original object-oriented base to include methodological support for agents (see, e.g.,
Henderson-Sellers and Debenham, 2003). As with any method engineering approach,
OPEN aims to provide a repository of method fragments that will offer direct as well
as extensible support for the construction of individually tailored methodologies for
use in both industry and research environments.

OPEN’s method fragments are generated directly from its metamodel (Figure 3)
and stored in the OPF repository. To create a situated methodology, various method
fragments are then chosen from this repository and combined to describe the process,
associated people and social issues, deliverables and so on — each of which is defined
formally by the corresponding metalevel element in the metamodel (Figure 4). In
other words, a full-scale and comprehensive methodology can be constructed from the
repository fragments. This could have an object-oriented, an agent-oriented or even a
traditional (procedural-focussed) bias.

Using the tenets of SME outlined above, such a methodology can be specifically
constructed and tailored towards a specific project or a specific organizational

8 Brian Henderson-Sellers

OPF’s Metamodel

OPF Repository Constructed
containing Individual Methodology or
Method Fragment Methodology
Descriptions Instance

Implemented Methodology

Fig. 3. OPEN defines a framework consisting of a metamodel and a repository of method frag-

ments
q help to g g
provide P Guidelines
macro organization
Process

Components

Vs

perform produce
/ - \W :
Work | evaluate > or
Units iterate Products
maintain
)
are
documented

using

Fig. 4. The five top-level metaclasses of the OPF’s metamodel (after Firesmith and Henderson-
Sellers, 2002) © Addison-Wesley

“standard” using the supplied construction guidelines (Figure 5) together with a set of
deontic matrices (Figure 6). These matrices support the identification of fuzzy rela-
tionships between pairs of method fragment types e.g. linkages between tasks and
techniques. Deontic values have one of five values ranging from mandatory through
optional to forbidden. This gives a high degree of flexibility to the process engineer,
perhaps assisted by an automated tool (Nguyen and Henderson-Sellers, 2003), who
can allocate appropriate deontic values to any specific pair of process components
depending upon the context i.e. the specific project, skills set of the development
team etc.

From Object-Oriented to Agent-Oriented Software Engineering Methodologies 9

Project

meets the needs
of a specific

Personalized <<instance of>>
Development Methodology metamodel
Methodology

provides elements provides

definitions of

=

ffor the construction

Repository of Predefined Ylethod Fragments

describes how
to use the

Construction Guidelines

% user % methodologist

Fig. 5. The methodologist is responsible for the methodology metamodel, creating most of the
method fragments in the repository and the guidelines for construction. The user (often the in-
house method engineer) uses these guidelines and the contents of the repository (to which they
are at liberty to add new fragments) in order to create a “personalized development methodol-
ogy” attuned to a specific project or context

Tasks

5 levels of possibility

M = mandatory

R = recommended
O = optional

D = discouraged
F = forbidden

Techniques
MOROUURARTTMOOZ
ZURTRRIZOTT T
oocuzgmzgooOoT™™
MORUZRUOO ™™
OmRmOOOTMMOO™

Fig. 6. One of the deontic matrices is used to link Tasks to Techniques. The values in the ma-
trix represent the likelihood of the occurrence of that pair using five levels of possibility (re-
drawn from Henderson-Sellers ez al., 1998) © Addison-Wesley

Initially, the OPF repository contained about 30 predefined instances of Activity,
160 instances of Task and 200 instances of Techniques (the three main kinds of Work
Unit) as well as multiple instances of Role, Stage, Language etc. Some of these are
orthogonal to all others in their group and some overlap. Consequently, during pro-
cess construction both association and integration strategies (Ralyté and Rolland,
2001) are needed. For example, there are several Techniques in the repository for
finding objects e.g. textual analysis, use case simulations, CRC card techniques.

10 Brian Henderson-Sellers

As noted above, currently one of the hardest tasks in SME construction is the se-
lection of the optimal set of method fragments to suit any specific situation. Syntactic
coupling can be verified in terms of the matching of the output from one fragment to
the input for a second. This is facilitated by both the generation of the fragments from
a metamodel and also by using a standard way of documenting the fragments (as is
done in the OPEN book series, for instance). Nevertheless, the current reality is that
the semantic aspect of the fragments must be analyzed “by hand”, usually by a skilled
method engineer (either in-house or as a visiting consultant or mentor). Work towards
a more objective approach is under way (e.g. Nguyen and Henderson-Sellers, 2003;
Ralyté, 2004).

Although originally created to support object-oriented software development, sev-
eral additions have been made to the OPF repository since its first publication in 1997
in order to enhance its support for various new technologies, including additions of
relevance to agent technology. In a series of papers, summarized in Henderson-Sellers
(2005), we have proposed 39 new Tasks and Subtasks, 23 new Techniques and 28
new Work Products as well as a single new Activity. The method fragments, listed by
name only in Table 1, thus provide a significant step in creating a fully supportive AO
methodology applicable to a wide variety of types of agent-oriented software devel-
opment approaches.

It should be noted that of these newly added method fragments, there are a number
in common to several of the analyzed AO methodologies. For example, the Task
“Construct the agent model” is, naturally, common. Prometheus tends to focus on
providing extensions to an OO approach. Consequently, some of the diagrams sup-
ported in Prometheus (Pagdham and Winikoff, 2002a,b) can be viewed as UML ex-
tensions. Tropos (Bresciani et al., 2004), on the other hand, strive to avoid mere OO
extensions and use the AO paradigm explicitly in their modelling of the methodology
itself. This introduces some novel diagrams and tasks, which focus on capabilities, as
well as on goals and plans. Their focus on early requirements also leads to the need to
add a new Activity instance, that of Early Requirements Engineering, to the OPEN
repository in order that users of OPEN can re-create the Tropos approach to AO sys-
tems development. Gaia (Wooldridge et al., 2000; Zambonelli et al., 2003) is more
interested in providing supporting for organizational and social interaction aspects of
agents — as is Cassiopeia (Collinot et al, 1996; Collinot and Drogoul, 1998) and, to a
significant extent, Tropos. This leads to the modelling of responsibilities and permis-
sions as well as the specification of organizational rules, roles, structure and behav-
iour.

Creation of a project-specific or organization-specific agent-oriented methodology
then proceeds using the specifically agent-oriented method fragments listed in Table 1
(which tend to focus only on areas different from object-oriented approaches) together
with a number of non-agent-oriented method fragments that are needed for those
elements of software development that are not technology/paradigm-dependent. These
include method fragments to describe project management, some metrics, reusability
and so on. A fully comprehensive methodology, suitable for direct industry usage, can
be constructed in this way; alternatively, one of the existing AO methodologies can
be reconstructed by using only those specific AO fragments. For instance, Henderson-
Sellers (2005) shows in more detail how a version of the Prometheus methodology
enhanced with some Tropos concepts can be put together from the method fragments

From Object-Oriented to Agent-Oriented Software Engineering Methodologies 11

in this newly enhanced OPF repository. Figure 7 shows a portion of the Task-
Technique matrix enacted (from Figure 6) for this case study. This shows one way
of constructing these matrices. Candidate Techniques (in this example) have been

Table 1. Summary of (a) new Tasks, (b) new Techniques and (c) new Work Products so far
added to OPEN in the creation of Agent OPEN. Source documents referred to are: 1. Deben-
ham and Henderson-Sellers (2003), 2. Henderson-Sellers and Debenham (2003), 3. Henderson-
Sellers et al. (2004a), 4. Henderson-Sellers et al. (2004c), 5. Tran et al. (2004a), 6. Henderson-
Sellers et al. (2004b), 7. Henderson-Sellers et al. (2004d), 8. Tran et al. (2004c), 9. Henderson-
Sellers et al. (2004¢) and 10. Gonzalez-Perez et al. (2004)

(a) New Tasks and (indented) associated subtasks Refs
Construct agent conversations 5
Construct the agent model 4,5,6,7

Define ontologies
Design agent internal structure
Define actuator module
Design perceptor module
Determine agent communication protocol
Determine agent interaction protocol
Determine control architecture
Determine delegation strategy
Determine reasoning strategies for agents
Determine security policy for agents
Determine system operation
Gather performance knowledge
Identify emergent behaviour
Identify system behaviours
Identify system organization
Define organizational rules
Define organizational structures
Determine agents’ organizational behaviours
Determine agents’ organizational roles
Identify sub-organizations
Model actors
Model agent knowledge
Model agent relationships
Model agents’ roles
Model responsibilities
Model permissions
Model capabilities for actors
Model dependencies for actors and goals
Model goals
Model plans
Model the agent’s environment
Model environmental resources
Model events
Model percepts
Specify shared data objects
Undertake agent personalization
Subtask to Create a System Architecture:
Determine MAS infrastructure facilities

*
©

— A PR PRAAOAFRPWWLWWWLWAOAFR VWA NITA =N === =0 O RO

el
©

12 Brian Henderson-Sellers

Table 1. (Continued)

(b) New Techniques Ref New Techniques Ref
Activity scheduling 1 Environmental evaluation 2
Agent delegation strategies 1 Environmental resources modelling 6
Agent internal design 4,5 FIPA KIF compliant language 2
AND/OR decomposition 3 Learning strategies for agents 1
Belief revision of agents 1 Market mechanisms 1
Capabilities identification & analy- | 3 Means-end analysis 3
sis Organizational rules specification 6
Commitment management 1 Organizational structure specification 6
Contract nets 1 Performance evaluation 1
Contributions analysis 3 Reactive reasoning: ECA rules 1
Control architecture 1 Task selection by agents 1
Deliberative reasoning: Plans 1 3-layer BDI model 2
(¢) New Work Products Ref New Work Products Ref
Agent acquaintance diagram 4,6 Network design model 8
Agent class card 8 Platform design model 8
Agent design model 8 Protocol schema 4,6
Agent overview diagram 4 PSM specification 8
Agent structure diagram 4 Role diagram 5
CAMLE behaviour diagram 10 Role schema 6
CAMLE scenario diagram 10 Service table 6
Caste collaboration diagram Caste 10 Task hierarchy diagram 8
diagram 10 Task knowledge specification 8
Coupling Graph 7 Task textual description 8
Domain knowledge ontology 8 (Tropos) Actor Diagram 3
Functionality descriptor 4 (Tropos) Capability Diagram 3
Goal hierarchy diagram 5 (Tropos) Goal Diagram 3
Inference diagram 8 (Tropos) Plan Diagram 3

Technique

Tasks
1 2 3 4 5 6

Abstract class identification
Agent internal design
AND/OR decomposition

Class naming

Control architecture
Context modelling
Delegation analysis

Event modelling
Intelligent agent identification

Means-end analysis

Role modelling

State modelling
Textual analysis

3-layer BDI model

Key:

Y

<< <=

< <
<<<< < =< ==
<
<

Y

1. Model dependencies for actors and goals; 2. Construct the agent model;
3. Design agent internal structure; 4. Model the agent's environment;

5. Model responsibilities; 6. Model permissions

Fig. 7. A small portion of the matrix linking Tasks and Techniques for the extended Prome-
theus case study described in detail in Henderson-Sellers (2005)

From Object-Oriented to Agent-Oriented Software Engineering Methodologies 13

identified for the pre-selected (at a previous stage) Tasks. Linkage decisions (here just
binary) are made either subjectively/experientially or by means of an overall
assessment of a number of factors relating to the project. These factors include CMM
level, specific skills in the workforce, domain of the project etc. Note that, even if a
candidate is chosen, there is no danger in over-selection since, for an unnecessary
Technique, the completed deontic matrix will simply exhibit a blank line (as for Tech-
nique: Abstract class identification in this small example — first line in Figure 7).

A next stage of the project is to critically analyze each of these proposed method
fragments to see if they are really unique, to ensure there are no overlaps and to en-
sure compatibility with non-AO method fragments already in the OPEN repository.

Overall, the strengths of this SME approach are that the finally constructed meth-
odology is highly attuned to local conditions and the people in the organization. The
challenges are to construct the several deontic matrices, ensuring that (a) linkages
accord to the local situation and (b) that the interfaces of any pair of method frag-
ments to be “plugged together” are compatible. Both of these can be facilitated by the
use of software tools, the former with a process construction tool (see, e.g., Nguyen
and Henderson-Sellers, 2003), the latter with a database-supported evaluation tool
(McBride, 2004), both of which we have prototyped.

S Summary

To date, the evolution of AO methodologies has been disparate with many groups
worldwide creating individual offerings. These vary in style and, particularly, in heri-
tage and have a specific focus, either in terms of domain, application style or lifecycle
coverage. For industry adoption, it is essential that full lifecycle coverage is achieved
in a “standardized” way. One way of achieving some degree of standardization yet
maintaining full flexibility is through the use of situational method engineering
(SME). With this approach, method fragments are created and stored in a repository
or methodbase. For an individual application, only a subset of these is then selected
from the repository and a project-specific (or sometimes organization-specific) meth-
odology is constructed. Here, we have demonstrated how this might work by using
the OPEN approach that already provides a significant coverage of AO method frag-
ments as well as more traditional OO and pre-OO fragments. Those newer fragments
supporting AO approaches are summarized here, describing as they do emerging
substantial support for AO methodological creation from SME and the OPEN reposi-
tory. Further work is needed to consolidate the AO contributions to this repository, to
check for inter-fragment consistency and to create a full suite of construction guide-
lines specific for the creation of AO methodologies suitable for industrial use.

Acknowledgements
I wish to thank Dr Cesar Gonzalez-Perez for his useful comments on an earlier draft

of this manuscript. This is Contribution number 04/28 of the Centre for Object Tech-
nology Applications and Research.

14 Brian Henderson-Sellers

References

Avison, D. and Fitzgerald, G., 2003, Where now for development methodologies, Comm.
ACM, 46(1), 79-82

Bernon, C., Gleizes, M.-P., Picard, G. and Glize, P., 2002, The ADELFE methodology for an
intranet system design, Agent-Oriented Information Systems 2002. Procs.AOIS-2002 (eds.
P. Giorgini, Y. Lespérance, G. Wagner and E. Yu), 1-15

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopolous, J. and Perini, A., 2004, Tropos: an
agent-oriented software development methodology, Autonomous Agents and Multi-Agent
Systems, 8(3), 203-236

Brinkkemper, S., 1996, Method engineering: engineering of information systems development
methods and tools, Inf. Software Technol., 38(4), 275-280

Brinkkemper, S., Saeki, M. and Harmsen, F., 1998, Assembly techniques for method engineer-
ing, Procs. CAISE 1998, Springer Verlag, Berlin, Germany, 381-400.

Burrafato, P. and Cossentino, M., 2002, Designing a multi-agent solution for a bookstore with
the PASSI methodology, in Procs. Agent-Oriented Information Systems 2002 (eds. P.
Giorgini, Y. Lespérance, G. Wagner and E. Yu), 102-118

Caire, G., Coulier, W., Garijo, F., Gomez, J., Pavon, J., Leal, F., Chainho, P., Kearney, P.,
Stark, J., Evans, R., Massonet, P., 2001, Agent oriented analysis using MESSAGE/UML,
Agent-Oriented Software Engineering Il (eds. M. Wooldridge, G. Wei and P. Ciancarini),
LNCS 2222, Springer Verlag, Berlin, Germany, 119-135

Castro J., Kolp M. and Mylopoulos J., 2002, Towards requirements-driven information sys-
tems engineering: the Tropos project, Information Systems, 27(6), 365-389

Cernuzzi, L. and Rossi, G., 2002, On the evaluation of agent oriented methodologies, Procs.
OOPSLA 2002 Workshop on Agent-Oriented Methodologies, Centre for Object Technol-
ogy Applications and Research, Sydney, 21-30

Coleman, D., Arnold, P., Bodoff, S., Dollin, C. and Gilchrist, H., 1994, Object-Oriented De-
velopment. The Fusion Method, Prentice Hall, Englewood Cliffs, NJ, USA, 313pp

Collier, R., et al., 2003, Beyond prototyping in the factory of agents, in: Multi-Agent Systems
and Applications I1I, LNCS 2691, V. Marik, J. Muller and M. Pechoucek, eds., Springer-
Verlag, New York, pp. 383-393.

Collier, R., O'Hare, G. and Rooney, C., 2004, A UML-based software engineering methodol-
ogy for Agent Factory, Procs. SEKE 2004 (in press).

Collinot, A. Drogoul, A. and Benhamou, P. 1996. Agent oriented design of a soccer robot
team. Procs. Second Intl. Conf. on Multi-Agent Systems (ICMAS’96)

Collinot, A. and Drogoul, A. 1998. Using the Cassiopeia Method to Design a Soccer Robot
Team. Applied Articial Intelligence (AAl) Journal, 12, 2-3, 127-147.

Cossentino, M. and Potts, C., 2002, A CASE tool supported methodology for the design of
multi-agent systems, The 2002 International Conference on Software Engineering Re-
search and Practice (SERP'02)

Dam, K.H. and Winikoff, M., 2004, Comparing agent-oriented methodologies, Agent-Oriented
Systems (eds. P. Giorgini, B. Henderson-Sellers and M. Winikoff), LNAI 3030, Springer-
Verlag, Berlin, 78-93

Debenham, J. and Henderson-Sellers, B., 2003, Designing agent-based process systems - ex-
tending the OPEN Process Framework, Chapter VIII in Intelligent Agent Software Engi-
neering (ed. V. Plekhanova), Idea Group Inc., Hershey, PA, USA, 160-190

DeLoach, S.A. 1999. Multiagent Systems Engineering: A Methodology and Language for
Designing Agent Systems, Procs AOILS ’99.

Firesmith, D.G. and Henderson-Sellers, B., 2002, The OPEN Process Framework, Addison
Wesley, Harlow, UK.

Fitzgerald, B., Russo, N.L. and O’Kane, T., 2003, Software development method tailoring at
Motorola, Comm. ACM, 46(4), 65-70.

From Object-Oriented to Agent-Oriented Software Engineering Methodologies 15

Gonzalez-Perez, C., Henderson-Sellers, B., Debenham, J., Low, G.C. and Tran, Q.-N.N.,
2004, Incorporating elements from CAMLE in the OPEN repository, Procs. IIP, Beijing,
21-23 October 2004

Graham, 1., Henderson-Sellers, B. and Younessi, H., 1997, The OPEN Process Specification,
Addison-Wesley.

Henderson-Sellers, B., 1995, Who needs an OO methodology anyway?, J. Obj.-Oriented Pro-
gramming, 8(6), 6-8

Henderson-Sellers, B., 2003, Method engineering for OO system development, Comm. ACM,
46(10), 73-78

Henderson-Sellers, B., 2005, Creating a comprehensive agent-oriented methodology - using
method engineering and the OPEN metamodel, Chapter 13 in Agent-Oriented Methodolo-
gies (eds. B. Henderson-Sellers and P. Giorgini), Idea Group Inc., Hershey, PA, USA

Henderson-Sellers, B. and Debenham, J., 2003, Towards OPEN methodological support for
agent-oriented systems development, Procs. First International Conference on Agent-
Based Technologies and Systems, University of Calgary, Canada, 14-24

Henderson-Sellers, B., Simons, A.J.H. and Younessi, H., 1998, The OPEN Toolbox of Tech-
niques, Addison-Wesley, UK, 426pp + CD

Henderson-Sellers, B., Giorgini, P. and Bresciani, P., 2003, Evaluating the potential for inte-
grating the OPEN and Tropos metamodels, Procs. SERP '03 (eds. B. Al-Ani, H.R. Arab-
nia and Y. Mun), CSREA Press, Las Vegas, USA, 992-995

Henderson-Sellers, B., Giorgini, P. and Bresciani, P., 2004a, Enhancing Agent OPEN with
concepts used in the Tropos methodology, Engineering Societies in the Agents World 1V.
4th International Workshop, ESAW' 2003 (eds. A. Omicini, P. Pettra and J. Pitt), LNAI
3071, Springer-Verlag, Berlin, Germany, 328-345

Henderson-Sellers, B., Debenham, J. and Tran, Q.-N.N., 2004b, Adding agent-oriented con-
cepts derived from GAIA to Agent OPEN, Advanced Information Systems Engineering.
16th International Conference, CAiSE 2004, Riga, Latvia, June 2004 Proceedings (eds. A.
Persson and J. Stirna), LNCS 3084, Springer-Verlag, Berlin, 98-111

Henderson-Sellers, B., Tran, Q.-N.N. and Debenham, J., 2004¢, Incorporating elements from
the Prometheus agent-oriented methodology in the OPEN Process Framework, Procs.
AOIS@CAiSE2004, Faculty of Computer Science and Information, Riga Technical Uni-
versity, Latvia, 370-385

Henderson-Sellers, B., Tran, Q.-N.N. and Debenham, J., 2004d, Method engineering, the
OPEN Process Framework and Cassiopeia, Procs. Symposium on Professional Practice in
Al Toulouse, France, August 22-27 2004, Kluwer

Henderson-Sellers, B., Tran, Q.-N.N., Debenham, J. and Gonzalez-Perez, C., 2004e, Agent-
oriented information systems development using OPEN and the Agent Factory, Procs.
ISD 2004, Vilnius, 9-11 September 2004, Kluwer

Huget, M.-Ph., 2002, Nemo: an agent-oriented software engineering methodology, in Procs.
OOPSLA 2002 Workshop on Agent-Oriented Methodologies, Centre for Object Technol-
ogy Applications and Research, Sydney, Australia, 43-53

Iglesias, C.A., Garijo, M., Gonzalez, J.C., Velasco, J.R. 1996. A methodological proposal for
multiagent systems development extending commonkads. In Proc. of 10th KAW, Banff,
Canada

Iglesias, C.A., Garijo, M., Gonzalez, J.C., Velasco, J.R. 1998. Analysis and Design of Multi-
Agent Systems using MAS-CommonKADS. In Intelligent Agents IV: Agent Theories, Ar-
chitectures, and Languages (LNAI Volume 1365) (eds. M.P. Singh, A. Rao and M.J.
Wooldridge), Springer-Verlag: Berlin, Germany.

Kendall, E.A. and Zhao, L., 1998, Capturing and Structuring Goals, Workshop on Use Case
Patterns, Object Oriented Programming Systems Languages and Architectures.

16 Brian Henderson-Sellers

Kendall, E.A., Malkoun, M.T. and Jiang, C., 1996, A methodology for developing agent based
systems for enterprise integration, in Modelling and Methodologies for Enterprise Inte-
gration (eds. P. Bernus and L. Nemes), Chapman and Hall

Kinny, D., Georgeff, M. and Rao, A., 1996, A methodology and modelling techniques for
systems of BDI agents, Technical Note 58, Australian Artificial Intelligence Institute, also
published in Agents Breaking Away: Procs. 7th European Workshop on Modelling
Autonomous Agents in a Multi-Agent World (MAAMAW'96), 56-71

Klooster, M., Brinkkemper, S., Harmsen, F. and Wijers, G., 1997, Intranet facilitated knowl-
edge management: A theory and tool for defining situational methods. Procs. CAISE
1997, Springer Verlag, Berlin, Germany, 303-317

Kruchten, Ph., 1999, The Rational Unified Process. An Introduction, Addison-Wesley,
Reading, MA, USA

Kumar, K. and Welke, R.J., 1992, Method engineering: a proposal for situation-specific meth-
odology construction, in Systems Analysis and Design: A Research Agenda, (eds. W.W.
Cotterman and J.A. Senn), John Wiley and Sons, New York, NY, USA, 257-269

Lind, J. 1999. Iterative Software Engineering for Multiagent Systems. The MASSIVE Method,
LNAI 1994, Springer-Verlag, Berlin

Luck M., Ashri, R. and D'Inverno, M., 2004, Agent-Based Software Development, Artech
House, Boston, 208pp

McBride, T., 2004, Standards need more rigour, Information Age, Oct/Nov 2004, 65-66

Nguyen, V.P. and Henderson-Sellers, B., 2003, OPENPC: a tool to automate aspects of
method engineering, Procs. ICSSEA 2003. Paris, France, Volume S, 7pp

Odell, J., Van Dyke Parunak, H. and Bauer, B., 2000, Extending UML for agents. In G. Wag-
ner, Y. Lesperance and E. Yu (eds.), Procs. Agent-Oriented Information Systems Work-
shop, 17th National Conference on Artificial Intelligence (pp. 3-17). Austin, TX, USA.

Omicini, A., 2000, SODA: Societies and Infrastructures in the analysis and design of agent-
based systems, Procs. First Int. Workshop on Agent-Oriented Software Engineering

Padgham, L. and Winikoff, M., 2002a, Prometheus: A Methodology for Developing Intelli-
gent Agents. Procs. Third International Workshop on Agent-Oriented Software Engineer-
ing, at AAMAS'02.

Padgham, L. and Winikoff, M., 2002b, Prometheus: A Pragmatic Methodology for Engineer-
ing Intelligent Agents. In Procs.Workshop on Agent-oriented Methodologies at OOPSLA
2002, November 4, 2002, Seattle.

Pavén, J., Gomez-Sanz, J. and Fuentes, R., 2005, The INGENIAS methodology and tools,
Chapter 4, Agent-Oriented Methodologies (eds. B. Henderson-Sellers and P. Giorgini),
Idea Group Inc., Hershey, PA, USA

Perini A., Bresciani P., Giorgini P., Giunchiglia G. and Mylopoulos J., 2001, A knowledge
level software engineering methodology for agent oriented programming, In J.~P. Miiller,
E. Andre, S. Sen, and C. Frasson, editors, Proceedings of the Fifth International Confer-
ence on Autonomous Agents, May 2001, Montreal, Canada

Ralyté, J., 2004, Towards situational methods for information systems development: engi-
neering reusable method chunks, Procs. 13th Int. Conf. on Information Systems Develop-
ment. Advances in Theory, Practice and Education (eds. O. Vasilecas, A. Caplinskas, W.
Wojtkowski, W.G. Wojtkowski, J. Zupancic and S. Wrycza), Vilnius Gediminas Techni-
cal University, Vilnius, Lithuania, 271-282

Ralyté, J. and Rolland, C., 2001, An assembly process model for method engineering, Ad-
vanced Information Systems Engineering), LNCS2068, Springer-Verlag, Berlin, 267-283

Ralyté, J., Deneckeére, R and Rolland, C., 2003, Towards a generic model for situational
method engineering, CAiSE2003 (ed. M.M.J. Eder), LNCS 2681, Springer-Verlag, Berlin,
95-110

From Object-Oriented to Agent-Oriented Software Engineering Methodologies 17

Ralyté, J., Rolland, C. and Deneckere, R., 2004, Towards a meta-tool for change-centric
method engineering: a typology of generic operators, CAiSE2004 (eds. A. Persson and J.
Stirna), LNCS 3084, Springer-Verlag, Berlin, 202-218

Rao, A.S. and Georgeff, M.P., 1995, BDI agents: from theory to practice. In Procs. First In-
ternational Conference on Multi-Agent Systems, San Francisco, CA, USA, 312-319

Rolland, C. and Prakash, N., 1996, A proposal for context-specific method engineering, Procs.
IFIP WGS.1 Conf. on Method Engineering, Chapman and Hall, 191-208

Rolland, C., Prakash, N. and Benjamen, A., 1999, A multi-model view of process modelling,
Requirements Eng. J., 4(4), 169-187

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W., 1991, Object-Oriented
Modeling and Design, Prentice-Hall, Englewood Cliffs, NJ, USA

Saeki, M., 2003, CAME: the first step to automated software engineering, Process Engineer-
ing for Object-Oriented and Component-Based Development. Procs. OOPSLA 2003
Workshop, Centre for Object Technology Applications and Research, Sydney, Australia,
7-18

Schreiber, A. Th. Wielinga, B.J., de Hoog, R. Akkermans, J.M and Van de Velde, W., 1994.
CommonKADS: A comprehensive methodology for KBS development. IEEE Expert,
9(6): 28-37

Shan, L. and H. Zhu, 2004. CAMLE: A Caste-Centric Agent-Oriented Modeling Language and
Environment. In Third International Workshop on Software Engineering for Large-Scale
Multi-Agent Systems. Edinburgh, 24-25 May 2004. [in press]. Springer-Verlag.

Silva, V. and Lucena, C., 2004, From a conceptual framework for agents and objects to a
multi-agent system modeling language, Autonomous Agents and Multi-Agent Systems,
9(1-2), 145-189

Sturm, A. and Shehory, O., 2004, A framework for evaluating agent-oriented methodologies,
Agent-Oriented Systems (eds. P. Giorgini, B. Henderson-Sellers and M. Winikoff), LNAI
3030, Springer-Verlag, Berlin, 94-109

Ter Hofstede, A.H.M. and Verhoef, T.F., 1997, On the feasibility of situational method engi-
neering, Information Systems, 22, 401-422

Tran, Q.-N.N. and Low, G.C., 2005, Comparison of methodologies, Chapter 12 in Agent-
Oriented Methodologies (eds. B. Henderson-Sellers and P. Giorgini), Idea Group Inc.,
Hershey, PA, USA

Tran, Q.N., Low, G. and Williams, M.A., 2003, A feature analysis framework for evaluating
multi-agent system development methodologies, in. Foundations of Intelligent Systems —
Procs. 14th Int. Symposium on Methodologies for Intelligent Systems ISMI1S’03 (eds. N.
Zhong, Z.W. Ras, S. Tsumoto and E. Suzuki), 613-617.

Tran, Q.-N.N., Henderson-Sellers, B. and Debenham, J. 2004a, Incorporating the elements of
the MASE methodology into Agent OPEN, Procs. ICEIS2004 - Sixth International Con-
ference on Enterprise Information Systems (eds. 1. Seruca, J. Cordeiro, S. Hammoudi and
J. Filipe), INSTICC Press, Volume 4, 380-388

Tran, Q.-N.N., Low, G. and Williams, M.-A., 2004b, A preliminary comparative feature
analysis of multi-agent systems development methodologies, Procs. AOIS@ CAiSE*04,
Faculty of Computer Science and Information, Riga Technical University, Latvia, 386-
398

Tran, Q.-N.N., Henderson-Sellers, B., Debenham, J. and Gonzalez-Perez, C., 2004c, MAS-
CommonKADS and the OPEN method engineering approach, submitted for publication

van Slooten, K. and Hodes, B., 1996, Characterizing IS development projects, in Proceedings
of the IFIP TC8 Working Conference on Method Engineering: Principles of method con-
struction and tool support (eds. S. Brinkkemper, K. Lyytinen, R. Welke) Chapman&Hall,
Great Britain, 29-44

Wagner, G., 2003, The Agent-Object Relationship metamodel: towards a unified view of state
and behaviour, Inf. Systems, 28(5), 475-504

18 Brian Henderson-Sellers

Wagner, G., 2004, AOR modelling and simulation: towards a general architecture for agent-
based discrete event simulation, Agent-Oriented Information Systems (eds. P. Giorgini, B.
Henderson-Sellers and M. Winikoff), LNAI 3030, Springer-Verlag, Berlin, 174-188

Wagner, G. and Taveter, K., 2005, Towards radical agent-oriented software engineering pro-
cesses based on AOR modelling, Chapter 10 in Agent-Oriented Methodologies (eds. B.
Henderson-Sellers and P. Giorgini), Idea Group Inc., Hershey, PA, USA

Wistrand, K. and Karlsson, F., 2004, Method components — rationale revealed, CAiSE2004
(eds. A. Persson and J. Stirna), LNCS 3084, Springer-Verlag, Berlin, 189-201

Wood, M. and DeLoach, S.A. 2000, An Overview of the Multiagent Systems Engineering
Methodology. Procs. 1st International Workshop on Agent-Oriented Software Engineer-
ing (AOSE-2000), 207-222

Wooldridge, M., Jennings, N.R. and Kinny, D., 2000, The Gaia methodology for agent-
oriented analysis and design, J. Autonomous Agents and Multi-Agent Systems, 3, 285-312.

Yu, E., 1995, Modelling Strategic Relationships for Process Reengineering, PhD, University
of Toronto, Department of Computer Science

Zambonelli, F., Jennings, N. and Wooldridge, M., 2003, Developing multiagent systems: the
Gaia methodology, ACM Transaction on Software Engineering and Methodology, 12(3),
317-370

MASUP: An Agent-Oriented Modeling Process
for Information Systems

Ricardo Melo Bastos and Marcelo Blois Ribeiro

Pontifical Catholic University of Rio Grande do Sul
Av. Ipiranga 6681, Prédio 30, bloco 4, Porto Alegre / RS, 90619-900, Brazil
{bastos,blois}@inf.pucrs.br

Abstract. Multi-agent systems modeling is a very demanding task especially
because the software development processes currently being used are based on
different paradigms. This work proposes a process to specify agent-oriented in-
formation systems that extends RUP. The models are specified through succes-
sive refinements using use cases as the reference to express the system re-
quirements. The design model takes into account the infrastructure services
required to implement the solution using a multi-agent approach. The models
are represented basically by extended UML and AUML diagrams and nota-
tions.

1 Introduction

The application of multi-agent systems (MAS) in information systems represents an
alternative to solve business processes problems, which requires both decentralization
and distribution in the decision-making and execution processes. However, there are
no consolidated modeling methods, languages and tools to address these problems.

According to [2], the application of the agent technology in information systems is
justified by the following characteristics:

— The domain involves intrinsic distribution of data, problem-solving capabilities
and responsibilities;

— It is necessary to maintain the autonomy of the subparts, without losing the orga-
nizational structure;

— The interactions are complex, including negotiation, information sharing and co-
ordination;

— The problem solution cannot be completely described a priori, due to the possibil-
ity of real-time perturbations in the environment (e.g. equipment failures), and the
natural dynamics of the business process.

An approach to modeling information systems requires models that represent their
static, functional and dynamic views. For MAS development, it is also necessary to
consider two abstraction levels: micro (agent) and macro (societal). At the micro level
are expressed the agent architecture and its internal behavior. The macro level repre-
sents the agents’ society defining the purpose of the system and its requirements.

Information systems are defined according to the requirements identified in the en-
terprise business processes. A business process involves the participation of actors
that interact within the activities to produce the expected results (products, reports,

R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 19-35, 2005.
© Springer-Verlag Berlin Heidelberg 2005

20 Ricardo Melo Bastos and Marcelo Blois Ribeiro

business documents, etc) to the enterprise. These activities are executed according to
a specific workflow. The decision-making autonomy of the involved actors is limited
by the acceptable alternative flows defined for each business process.

This work proposes a modeling process for agent-oriented systems named
MASUP — Multi-Agent Systems Unified Process. This process is an extension of the
Rational Unified Process — RUP [1], which is a consolidate methodology for object-
oriented system design. The specification of the system is composed by a set of mod-
els derived from UML and AUML [4] [7]. Such as RUP, the artifacts that compose
each model are refined in order to produce the next model towards the complete sys-
tem specification. MASUP is being developed and applied academically since 2002.
The system example presented in this work to illustrate the MASUP application was
implemented using Java. The agents were thought as an aggregation of objects that
ran in a multi-threading environment.

In this work, the requirements, analysis and design workflow activities are pre-
sented in detail. Due to size restrictions, the other workflow activities (implementa-
tion, test and deployment) were left out of the scope of this work. However, the speci-
fication of agents’ attributions and interfaces defined in the analysis and the design
workflows are important to model and implement the agents, as well as to realize the
test of the system.

Section 2 briefly presents a MAS modeled using the MASUP process. Section 3
describes the requirements, analysis and design workflow activities for the modeling
process. Section 4 presents the related work. Section 5 presents current and future
work. Finally, conclusions are drawing in section 6.

2 The Ilustrative Example

This section presents the example used to illustrate MASUP. The example shows a
characteristic decentralized planning problem present in industrial production plants.
We will explain the concepts necessary for the problem domain understanding in
order to enhance the readers experience in the rest of the paper.

A production system involves products, material consumed, components or sub-
assemblies used in the products, production operations and resources to these opera-
tions. During the production process, the material is consumed and the resources are
used to produce the goods. The resources needed are indicated by a set of manufac-
turing routines for each product, formed by different production operations. The re-
sources are essentially machines, equipment and labor available in the production
system and they have a limited capability.

Considering that production activities consume resources, the resource allocation
process is essential to achieve the better balance between cost and benefit for the
whole production plant. Production planning is a decision-making activity which
involves scheduling algorithms and cost-benefit analysis to specify manufacturing
calendars. In a manufacturing calendars is defined which activity must be performed
at each instant of time for every resource.

According to [8], the conventional production systems use centralized, global and
sequential planning models. In order to optimize the system, the decisions involved in
the planning activity are processed in a centralized way. This could lead to a combi-
natorial explosion due to the number of interactive entities that must be jointly pro-

MASUP: An Agent-Oriented Modeling Process for Information Systems 21

cessed. Otherwise, the centralized processing determines the global planning of the
production system. Any possible variation that could affect the particular planning of
one involved execution entity turns the global plan inconsistent, requiring a new plan-
ning execution.

To develop a production planning process, a production planner must basically
consider:

(i) each item’s production route — a set of activities necessary to manufacture the
item, showing the precedence relationship which must be observed when exe-
cuting them;

(i) necessary resources — some resources have to be used in each activity executed
in the process;

(iii) resource capability limitations;

(iv) execution time for each activity — the resources execution time for each activity
type must be taken into account for planning their allocation over time;

(v) resources’ set-up time;

(vi) the deadlines for each item.

Having these aspects in mind, the question to be answered at each variation on
demand must be “is there manufacturing capability to satisfy new demands for the
company production plant”? Since every production activity consumes resources, the
answer to this question must consider if there are resources available to be used on
the production process for these products.

The complexity in the production planning decision-making process is on search-
ing an ideal level of resource utilization, which implies fundamentally on searching
the best resources allocation at each moment aiming to satisfy the existing demands.
The centralized process clearly has difficulties in considering re-planning in execu-
tion time.

Decentralizing the planning process could help to address this issue. The planning
problem becomes a distributed process in which each participant decides where and
when the local resources will be used. This perspective is different in comparison
with the conventional scheduling algorithms, requiring a distinct computational
model for its development.

We propose the application of the MAS to the decentralized production planning
problem. The idea is to distribute the decision-making among agents that represent
the resources and the activities needed to produce a certain item. The reference model
used to describe the conceptual modeling of the system is derived from the CIMOSA-
Computer Integrated Manufacturing Open Systems Architecture framework [12]. At
CIMOSA, a Domain Process is functionally decomposed into Enterprise Activities
defining a production plan (a logical sequence of Enterprise Activities within a Do-
main Process). The Enterprise Activities, which are executed by the Functional Enti-
ties, correspond to elementary tasks that are normally executed under restrictions.
Functional Entities represent the production resources. The production events, such as
a production order creation, directly trigger Domain Processes.

Based on the previous ideas a production planning system named M-DRAP —
Multi-Agent Dynamic Resource Allocation Planning was modeled using MASUP and
implemented with Java. M-DRAP proposes an approach to schedule the production
orders in real time using software agents and decentralized decision-making.

22 Ricardo Melo Bastos and Marcelo Blois Ribeiro

3 The Multi-agent Systems Unified Process (MASUP)

The Rational Unified Process [1] is one of the most accepted development process in
the software industry. RUP is structured in a sequence of workflows and uses UML
as modeling language to generate the models constructed in each workflow. MASUP
is a RUP variation to model agent-oriented systems. The main goal is to systemati-
cally identify the applicability of an agent-oriented solution for the problem. In this
sense, MASUP starts like RUP, using the same requirements workflow, but in the
analysis and design workflows, it includes different activities and artifacts in order to
produce the MAS specification. Fig. 1 shows the MASUP models and the artifacts
that composes each model.

1

Use-Case Diagram

=<generate==_ =4

Use-Case Model
- - SRS | Use-Case Detailed Description

4\ Toes =
) <<generate=>‘~:>_|
==trace== | Activity Diagram
— | |
Analysis Model o f‘_g'erle_ra_te_’f I AUML Extended Activity Diagram
STl _==generates=
<trace=> EJ ‘\\\ Mﬁ“x‘fig)anerate» Analysis Class Diagram
i <<generate>>\“\\ E“‘n%
| S
L \“\ Role Specification
Design Madel =
~- =<refing== o

. s ——

Tl Agent Class Diagram
s=generatess -

ALML Extended Sequence Diagram

Fig. 1. MASUP models and artifacts

3.1 Requirements Workflow

The RUP proposes a use-case-driven approach to develop information systems. It
means that the requirements of the system are captured by the use cases and the sys-
tem is build to realize them. During the analysis and design workflow activities, the

MASUP: An Agent-Oriented Modeling Process for Information Systems 23

use-case model produced in the requirements workflow is transformed into a design
model via an analysis model. It is possible to apply the same logical process to spec-
ify agent-oriented information systems. However, in addition, for a MAS modeling
process it is necessary to define procedures to identify the agents and to represent the
macro level of the system into each activity.

The requirements workflow captures the user requirements through use cases. The
artifacts generated from the requirements workflow are use cases descriptions (textual
specification and activity diagrams) and the use-case diagram.

The activities of the requirements workflow are the same proposed by the RUP:

— find actors and use cases;
— prioritize use cases;
— detail the use cases and structure the use-case diagram.

At Fig. 2 is presented a partial use-case diagram for the M-DRAP system. The re-
source allocation process itself occurs in the use case Generate Production Order.
Fig. 3 presents the UML Activity Diagram for this use case using the terminology of
CIMOSA. The Generate Production Order use case involves the allocation of func-
tional entities required to execute the enterprises activities occurrences that compose
a domain process. The main problem in this process is the sharing of functional enti-
ties among all enterprises activities occurrences in the production system. For each
functional entity it is necessary to maintain and update an agenda with its commit-
ments. This characterizes a situation where it is possible to apply a distributed plan-
ning process in which every involved functional entity is able to allocate itself to
support the production demand, considering the local and global constraints of the
production system.

3.2 Analysis Workflow

According to the RUP [1], the purpose of the analysis workflow is to achieve a more
precise specification of the requirements, producing a model that represents a first cut
of the design. While the use-case model represents an external view of the system, the
analysis model describes an internal view of the system. The analysis workflow in-
volves the definition of the architecture of the system, identifying the analysis classes
required to realize the use cases. The analysis classes could be related to the activities
in the UML Activity Diagram through the objects flow, as presented in Fig. 3.

D
A

o

_—Update Domain Process \/

\ ‘\) /‘ / Production
Product T Planner
Engineer o Update Enterprise Activity . \‘

_

-
- L

Y
\,,7,,/ Generate Production Order

R

\\ / Update Product Bill of Materials

Update Functional Entity

Fig. 2. Partial M-DRAP Use-case Diagram

24 Ricardo Melo Bastos and Marcelo Blois Ribeiro

[there is another enterprise activity :|r . rorise Activity
Ocurrence

[there is no more Enterprise Activities for the Domain Process |

/ Close Praduction "
Order

S

PRODUCTION PLANNER. SYSTEM

e

Work
" Inform a Product - Create Production ™, > Order
Request J Order
-

. Chose a Domain . - Show Reference —

) Process k- | Domain Process

£ o Process
|- T T T T T T T T T TR S T o e e T T T T T 1

. Show Enterprise Activity |
: £ for Domain Process I
“
| |
| “ Salect Functional - il Show Functional Entitles Instances ’ | Enterprise |
I . Entities Instances | gualified to execute the Entarprise Activity Activity |
e - e - o

| I
: e Schedgl:z the Enterprise . ,';' Crea‘be_an Enterprise : Functional Entity |
| b Activity ocurrence pi Activity ocurrence) Instance I
| |
| |
I I
I I
| I
| |
| |
| |

Fig. 3. UML activity diagram for the use case Generate Production Order

Packages are used to organize the analysis model in smaller and more manageable
pieces. RUP package identification activity is used in MASUP. MASUP also includes
the RUP analysis class diagram creation activity. However, it is necessary to redefine
the other activities for agent-oriented solution modeling purpose. After specifying the
analysis class diagram and representing the objects required by and generated in each
activity, the activity diagrams must be inspected for agent-oriented solution identifi-
cation. At this point, the system designer may follow the activities flow and analyze if
an agent-oriented solution is suitable for the problem. If an agent-oriented solution is
appropriate, the analysis workflow must include other activities such as the definition
of the agents that compose the society with their attributions and the representation of
the interaction among the agents necessary to realize the use cases activities. If an
agent-oriented solution is not appropriate, the designers should follow the analysis
workflow indicated in RUP.

MASUP analysis workflow main activities are:

— Redesign of the activity diagram to model the agent-oriented solution for the
selected use cases;

— Identification of the roles required for the MAS solution based on the activity dia-
gram generated in the previous steps;

— Specification of each agent role defining its attributions;

— Identification of the agents that should play the roles specified;

— Definition of the relationships among the agents composing the agent society ar-
chitecture.

These activities generate the following artifacts package in the analysis model:
AUML Extended Activity Diagram, Roles Specification and Agent Class Diagram.

MASUP: An Agent-Oriented Modeling Process for Information Systems 25

3.2.1 Redesigning the Activity Diagrams to Model the Agent-Oriented Solution
Considering that some use cases realization present a situation where it is suitable the
application of an agent-oriented approach, it is necessary to specify the solution ex-
ploring its properties and characteristics. It means to specify the actions related to the
application of the agent-oriented solution for the problem.

The use case Generate Production Order (Fig. 2) is a candidate to an agent-
oriented solution. The agent-oriented solution identification is based on the use case
specification shown in terms of the activity diagram presented in Fig. 3. It is possible
to notice that the functional entities selection for each enterprise activity is done itera-
tively in batch by the user. The system does not respond in real-time to ordering vari-
ances. This flow also involves problem-solving capabilities based on the functional
entities production restrictions and on the overall production demand in the system. If
we distribute the decision-making process in order to take into account each func-
tional entity restrictions while maximizing the system throughput, we may include
negotiation and coordination capabilities in the system internal elements. Based on
these factors and on the items presented in section 1 used to characterize the multi-
agent solution appropriateness to a problem, we can continue to model the system
using the MASUP workflow activities instead of the RUP ones.

Since an agent-oriented solution is suitable, it is necessary to define a conceptual
solution for the problem considering the application of MAS. For this purpose the
software engineer needs to identify which activities in the UML Activity Diagram
will be played by agents. It includes system activities and actor activities. If an actor
activity execution is assigned to agents, the actor transfers its responsibility to the
system. This indicates that the agent will have decision-making responsibility in the
business process. The activities surrounded by a dashed bold line in Fig. 3 were de-
fined as suitable to have a multi-agent solution in the M-DRAP system.

The software engineer must review the original UML Activity Diagram for the use
case and adapt it for the MAS solution. At the M-DRAP system we apply the FIPA-
Contract-net protocol [11]. The AUML Extended Activity Diagram for the use case
Generate Production Order applying the multi-agent solution is presented at Fig. 4.
The resource allocation strategy is project-driven and the coordination among the
agents is implemented through a market-oriented behavior. We defined a negotiation
process, which allows the agents forming coalitions in order to participate in the bid-
ding process. The main objective of the agents is to attend the production demand in
an economic, equilibrated and interactive way. Economic, as the proposals must be
defined using real production costs. Equilibrated, as the agent always tries to assign
the production resource under its responsibility for activities that optimize the re-
source usage in the production system. Interactive, as the allocation process is exe-
cuted in real time and in a distributed way involving all the agents qualified to attend
a production event.

3.2.2 Identifying Agent Roles from Use Cases Realization

The next step is to identify the roles required to perform the use case activities de-
fined to realize the MAS solution. In MASUP, the analysis objects identified in the
RUP analysis workflow are examined in order to identify possible new responsibili-
ties capable to fulfill the roles required to realize the MAS solution. This approach
brings as an additional benefit the possibility to establish a relationship among the

26 Ricardo Melo Bastos and Marcelo Blois Ribeiro

analysis objects and the agent roles, which is helpful to integrate the MAS with the

rest of the information system in the enterprise. Systems developed under a multi-

agent perspective must be considered as part of the enterprise information system.
The following aspects must be considered in order to evaluate the potentiality of
an analysis object to be associated to a role:

— Responsibility: the application of the agent-oriented approach in information sys-
tems establish decision decentralization and distributed planning of the activities
that are executed in order to accomplish the objectives of the system as a whole.
Thus, an analysis object could be associated to a role when its responsibilities,
under a multi-agent perspective, will require decision-making capabilities and
autonomy;

— Information: the attributes maintained by the analysis objects define the knowl-
edge of the system in terms of information. Consequently, this knowledge could
be totally or partially relevant to the multi-agent solution. Thus, all the analysis
objects that maintain attributes required by the multi-agent solution are natural
candidates to be associated to roles;

— Behavior: in the same way of the information knowledge, the behavior of the
analysis objects could be total or partially relevant for the multi-agent solution.
Thus, the behavior could define an analysis object as a natural candidate to be as-
sociated to a role.

Fig. 4 presents the roles compliant with the multi-agent solution identified for the
use case Generate Production Order. Each request presented by a domain process
role for an enterprise activity role demands one or more functional entity candidates
roles to be scheduled. When more than one functional entity is necessary to execute
an enterprise activity a coalition is created. In this example, it is presented a scenario
that requires a coalition formation. It means that the enterprise activity requires at
least two functional entities to be executed. The coalition is composed by one or more
coalition members’ roles and one coalition coordinator role. Actually, in each coali-
tion the coalition members and the coalition coordinator roles represent a subset of
the functional entity candidates’ roles selected by the enterprise activity as qualified
candidates to execute the enterprise activity occurrence. Each coalition candidate for
enterprise activity execution must submit a proposal that will be evaluated by the
enterprise activity role.

Some activities, as for example Call for candidates to execute functional opera-
tions, require the simultaneously interaction between two roles. In this example, the
enterprise activity role sends a message to all functional entity candidate roles asking
about the possibility to participate in the bidding process that involves the execution
of an enterprise activity under its responsibility.

The activity diagram shown in Fig. 4 presents some differences from the AUML
extended activity diagram. In the AUML, a swimlane identifies each role. A swim-
lane is an activity diagram partition applied to organize responsibilities for activities.
However, this representation does not allow the association of two or more roles with
the same activity. Interaction is a basic principle for MAS and involves cooperation,
joint planning and negotiation among agents. In order to solve this problem, it is used
dependence associations to represent the relationships between the roles and activi-
ties. A dependence association between a role and an activity means that the execu-
tion of the activity requires the participation of the role.

FRODUCTION FLANER.

® -

MASUP: An Agent-Oriented Modeling Process for Information Systems

Inforin a Produst

NULTI.CBEHT S¥ETEW

. Create Production .,
]

- Chose a Domain ™,

Fig. 4. AUML Extended Activity Diagram for the use case Generate Production Order

Procass.

Crder

/" Show Reference

*_ Domain Process '

o “*Selectan Enterprise Actlivitythat "

[Mere is ancther|enterprise activily |

3.2.3 Role Specification
The role specification provides the necessary knowledge about the roles required to
realize the use cases specified for the MAS. This activity comprehends the identifica-
tion of the attributions for each role identified in the requirements workflow. The
attributions are derived from the use case activities which require the role participa-
tion. For each activity could be associated constraints that affect its execution. Fig. 5
shows the Role Specification for the coalition member role presented in Fig. 4.

Gall for candidates o execute
. funcficnal operations.

<l > K
t Enterpriae ¥
Activity

. Define ™
. coaliions
I }
; Gall for coalitien proposals to ™.
K execute enterprise activity -

" Benerate coaliion "
! proposal * :
I -
.- "Present coalition
proposal g

-

< Evaluate
. proposals

; Close contract ™

the Domain Process -

<< ralg
+ Dotnaln
Process

< polesn

: Functional Entity

Candidate

<srolgEs
: Coalltion
Member

<ol
: Coalition
Loord|nater

[there ia no more Enterprise Activities for the Domain Process |

Close Froduction .
Order !

Lk

..

27

Role: Coalition Member

Use Case Activity Attributions Constraints

Generate Generate coalition | Elaborate and present an — Keep the commitments

Production proposal individual proposal to the previously assumed.

Order coalition coordinator. — Observe the deadline to send
its individual proposal to the
coalition coordinator

Generate Close contract Confirm the proposal in — Keep the commitments

Production order to close the coalition previously assumed.

Order contract.

Fig. 5. Role specification

28 Ricardo Melo Bastos and Marcelo Blois Ribeiro

3.2.4 Identifying Agents

An agent is an aggregation of roles whose attributions are complementary. Comple-
mentary attributions mean that the agents should change its role in order to assume
another attribution required for a use case activity. According to AUML Extended
Activity Diagram presented in Fig. 4, which represents the agent oriented solution
defined to schedule a production order in the M-DRAP, the enterprise activity role is
responsible to recruit functional entities to attend a production demand. The enter-
prise activity role calls for functional entity candidates to execute a functional opera-
tion. Those functional activities candidates form coalitions where there are two roles:
coalition member and coalition coordinator. Actually, both of them just change the
role functional entity candidate to coalition member or coalition coordinator when
they compose the coalition. Consequently, it is possible to define an agent called
functional entity playing three roles: candidate functional entity, coalition member
and coalition coordinator. The other roles define a specific agent (domain process
and enterprise activity) since these agents do not change their roles.

The architecture of the agent and its behavior is modeled and implemented in the
micro level of the system, which is out of the scope of this work. The decision-
making autonomy of the agents is limited by the business process workflow.

An agent class specifies the attributions, behavior and architecture shared by a set
of agents. Under a macro level point of view, the information required to define an
agent class are its name, its maximal number of instances at the society, its attributes,
interaction interfaces, its roles and its attributions. The interaction interfaces provide
the communication acts that the agent is capable to recognize as valid to attend to a
requirement from another agent. The interaction interfaces will be defined just in the
design workflow (specifying agent interactions scenarios activity).

Fig. 6 presents the functional entity agent class of the M-DRAP. The agent classes
are represented by rectangles where it is defined at least the agent class name and its
maximal number of instances. The number of instances specifies the maximum quan-
tity of agent instances at the society.

agent class name

/ |* °\ number Of

Functional Entity inst
instances

Identification
Qualifications ‘b
Work Calendar e——— attributes
Cost per Time Unit : :
interaction

&—— interfaces

functional entity candidate, coalition member, coalition coordinator e—— roles

- To elaborate a bid coalition in order to attend a call for proposal
from an Activity agent;

- To assume a commitment based on the contracts established & attributions
with an Activity agent to execute an functional operation;
- To treat disturbance events that affects its commitments.

Fig. 6. Agent class specification

MASUP: An Agent-Oriented Modeling Process for Information Systems 29

3.2.5 Defining the Agent Society

To specify the agent society it is necessary to define the hierarchical relationship
between the agents, considering their roles in the activities flow required to realize the
use cases of the system. The Agent Class Diagram represents the agent society.

The relationships between the agents are identified from the AUML Extended Ac-
tivity Diagrams. It means that in the Agent Class Diagram must be defined relation-
ships between agents’ roles that are responsible to jointly execute one or more activi-
ties. Additionally, according the MAS solution, it is necessary to define the
coordination structure for the agent society in order to represent the hierarchical rela-
tionship between the agents.

The relationships between the agent classes represent communication channels
where messages are exchanged. Arrows connecting both agents’ sender and receiver
express the relationships between them. The name of these relationships could be
optionally identified. The relationship multiplicity and the role of the agent are shown
near the end of the path for which it applies. The multiplicity could be exact (1), an
interval (1..3), one or more (1..*) or many (0..*¥). Fig. 7 presents the agent class dia-
gram involving the agents responsible to realize the Generate Production Order use
case.

In MASUP the hierarchical relationships between the agents are defined as two
different types: authority (permanent or role dependent) and communication. In the
permanent authority relationship, the receiver must necessarily attend a request from
a related agent. A solid line with a bold arrowhead represents this kind of relation-
ship. At the role dependent authority relationships, the receiver answers the request
just when the sender is playing a specific role. A solid line with a semi-bold arrow-
head represents this relationship. In the communication relationships the receiver
locally decides whether it will or not attend a request. A solid line with an arrow
represents this kind of relationship.

agent class

e

Domain Process relationship with
stereotype

1

permanent communication role

authority relationship <<coalition>>

relationship e
coalition
1.* coordinator
\ '
Enterprise Activit
IIIE 0.* 1.*

multiplicity

R 1.

Functional Entity

coalition
member
role dependent
authority
relationship

Fig. 7. Agent class diagram

3.3 Design Workflow

The purpose of design workflow is to adapt the analysis results to the constraints
imposed by the implementation. In the design workflow MASUP has activities to
define the agent interactions and how they will interact with the implementation envi-

30 Ricardo Melo Bastos and Marcelo Blois Ribeiro

ronment. MASUP does not force the use of any specific implementation platform.
Because of this, it uses the notion of infrastructure services to map the implementa-
tion platform services, showing how the designed agents will interact with them.

The MASUP activities involved in the design workflow are:

— Specification of the agents interaction scenarios;

— Complementation of the agent class specification with the agents communication
acts necessary to implement the interactions modeled;

— Identification of the infrastructure services involved on the scenarios specified by
the interactions modeled.

The artifacts produced in the design workflow are the Sequence Diagrams and the
Agent Class Specification updated by the inclusion of the communication acts neces-
sary to provide the interactions.

3.3.1 Specifying Agent Interactions Scenarios

This activity describes the interaction among the agents that jointly execute a use case
activity. The interactions are described by AUML Extended Sequence Diagram
[4]1,[7] including some new properties proposed to allow the identification of agent
roles and coalitions, the number of agent instances and the representation of hierar-
chical relationships between the agent instances. For each activity that composes the
use cases of the system, which requires two or more agent for its execution, it is de-
picted an AUML Extended Sequence Diagram.

The hierarchical relationships defined at the Agent Class Diagram as well as the
agent roles attributions specified at the Role Specifications must be observed to depict
the Sequence Diagrams in order to guarantee the integrity of the MAS model.

The arrows represent the message exchanged between the agents. Another exten-
sion in the AUML Extended Sequence Diagram is the representation of message
types. A solid bold line represents a type dependent broadcast message, a message
that the sender agent transmits for all the agents that belongs to an agent class. A
dashed bold line is used to represent a multicast message that is a message send for a
specific set of agents.

Fig. 8 presents an AUML Extended Sequence Diagram for the activity Call for
coalition proposals to execute enterprise activity (Fig. 4). The messages are ex-
pressed by ACL communications acts. The a:Enterprise Activity agent sends a call
for proposal multicast message to all Functional Entity agents, which play the coali-
tion coordinator role and belong to a coalition named production team.

A dashed line represents the lifeline of the agent and a double line (focus of con-
trol) defines its participation in the interaction. The basic flow identifies the regular
flow of messages between the agents. The alternative flows express the possible
variations in the interactions between agents.

3.3.2 Complementing the Agent Class Specification

with the Agents Communication Acts
The AUML Extended Sequence Diagram is the basis for the definition of the com-
munication acts necessary for each agent to run. The interactions modeled must be
distributed according to the agent responsible for sending the messages to the other
agents. Each ACL message involved in the interaction must be inserted in the agent
class specification appropriately. Fig. 9 shows the complete agent class specification

MASUP: An Agent-Oriented Modeling Process for Information Systems 31

Agent name \.

a: Enterprise Activit

amount of instances

a4

*

Functional Entity
\. Production team

role —@ |Coalition coordinator

coalition name

(gefuse: content(unfeasible-activ-proposal(reason))) |
<

~ /S

message Decision point

basic flow Alternative flow

Fig. 8. AUML Extended Sequence Diagram

Functional Entity *
Identification
Qualifications
Work Calendar
Cost per Time Unit
L . . I interaction
cfp: content (invitation (refer, operationld, timeInterval, deadline N
(cfp ((p)) | ¢—— interface

functional entity candidate, coalition member, coalition coordinator

- To elaborate a bid coalition in order to attend a call for proposal
from an Activity agent;

- To assume a commitment based on the contracts established
with an Activity agent to execute an functional operation;

- To treat disturbance events that affects its commitments.

Fig. 9. Agent class specification with communication acts

produced by the addition of the messages needed by the agent to interact with the
other agents in the interaction scenarios previously modeled.

3.3.3 Identifying the Infrastructure Services

The design model expresses the particular properties and characteristics of agent-
oriented systems. In this sense, some specific services are required to support the
operations of the agent society. These services involve the support to the domain
agent's in the execution of their attributions, such as accessing the information inside
the corporation database and control agent mobility to/from the environment. These
services are offered by different agent implementation platforms such as FIPAOS [9]
or SemantiCore [5]. Some of these platforms aggregate such services in administra-
tive agents.

MASUP does not impose any implementation platform for the designer. The link-
age between the generated diagrams and the implementation platform is done through
the indication of which services are necessary in the interaction scenarios previously
defined. In order to represent the services needed, the AUML Extended Sequence

32 Ricardo Melo Bastos and Marcelo Blois Ribeiro

-

a: Enterprise Activity Functional Entit S S

Production team :DbhProduction

Coalition coordinator
T T
1]
1]

]
(accept-proposal: content(closeCor{tract(refer,inicDate,inicHour,er{dHour,activId)))
N]

7

]
1
(inform: content(closeContract())) '
1
1

.
~

(insert:content(update(ProdSched er,inicDate,inicHour,endHaur‘activld)))
rd

=
]

Fig. 10. Design model: AUML Extended Sequence Diagram

Diagram must be revisited and the infrastructure services and interactions with the
agents represented.

To illustrate this procedure, Fig. 10 presents an AUML Extended Sequence Dia-
gram for the activity Close contract (Fig. 4), where the infrastructure services identi-
fied by the stereotype «database_handler» offers an interface that contains a set of
queries and data update capabilities that may be requested by the domain agents. The
<<database_handler>> Dbhproduction constitutes the service access API provided by
the implementation platform. It receives a request to update the ProdSched database
including an enterprise activity occurrence and its respective information about exe-
cution time. Notice that the message exchange represented between the agent and the
service is a simple message instead of an ACL message. The message representation
format between the agent and the service is dependable on the implementation plat-
form. If the platform uses Java for example, this message could be a simple method
invocation.

4 Related Work

Agent-oriented software development is a growing research area since there are no
standards for agent systems design and implementation. In spite of the lack of stan-
dards, there are many interesting works showing a methodological approach for agent
system development. This section compares three well-known agent-oriented meth-
odologies presented in the literature to MASUP. The objective is to show the
MASUP weaknesses and strengths and to explicit MASUP contributions in relation to
the state of the art research in the area. An in-depth comparison between MASUP and
other methodologies is out of the scope of this paper due to size restrictions.

The MaSE methodology [6] has two main development phases: the analysis and
the design. In the analysis phase, MaSE applies use cases to identify a set of roles and
communications paths within the system. The use case specification allows the defini-
tion of the basic scenarios for the system and depicts Sequence Diagrams for each
scenario. The phase finishes with the specification of the roles and tasks related to the
system domain. In the design phase, the designer represents the agents, the roles they
play and the conversation between them in a single agent class diagram. After detail-

MASUP: An Agent-Oriented Modeling Process for Information Systems 33

ing the conversation between the agents, the designer finishes the phase by creating
the agents internal structure and the system design (a deployment diagram showing
the agents location within the system).

MaSE uses different diagrams to capture the different systems views such as
MASUP. It applies use cases as the basis for scenarios definition but it does not iden-
tify which use case requires an agent-oriented solution as proposed in this work. The
MaSE’s UML based diagrams have the same limitations UML has to model the dif-
ferences between OO and agent systems. The MaSE activities and artifacts do not
permit to define the aspects related to the hierarchy between the agents, coalition
representation and multicast/broadcast message exchange. MaSE do not model the
computational environment and the specialized services required to support the
agents’ activities in MAS. This may lead to a conceptual gap between the design
model and the implementation infrastructure.

The Tropos methodology [3] proposes a process with five phases: early require-
ments, late requirements, architectural design, detailed design, and implementation.
Tropos uses a requirement-driven approach for MAS modeling. It elicits actor e goals
in the early requirements. The early requirements phase also models the plans and
resources used to achieve the goals defined. The following phase, late requirements,
details the artifacts previously defined refining the goals in terms of sub-goals. The
phase provides a diagram showing goals and sub-goals relations in the system organi-
zation. The architectural design phase derives new actors to fulfill non-functional
requirements identifies in the previous phase and generates capabilities and agent
types based on the actors that group these capabilities. The detailed design phase
model the system micro level, defining the agent plans and the agent interactions.
These definitions are done through UML activity diagrams and AUML interaction
diagrams respectively. Tropos use in the implementation phase the JACK Intelligent
Agents [10] platform to implement the agent solution. The design artifacts are
mapped to the JACK constructs in the implementation phase.

The Tropos methodology represents an important referential for the definition of
requirements in MAS, however the proposed process do not cover important aspects
in business processes as agent role change, hierarchy among the agents and coalition
formation as explored in MASUP. Tropos also uses a proprietary notation to repre-
sent the requirements and a fixed implementation platform. As other methodologies,
Tropos consider the macro and micro level, defining different process phases spe-
cially used for the architectural (macro) and detailed (micro) system views.

The Prometheus methodology [13] consists of three phases: the system specifica-
tion, the architectural design and the detailed design. The system specification phase
identifies the system functionalities, goals, percepts and actions. Prometheus uses
scenarios descriptions to specify the steps necessary for a functionality realization.
The architectural design phase is primarily concerned in the identification of the
agents in the system and their interaction. The agents defined group functionality and
the related percepts, actions and events necessary in the functionality. The main dia-
gram of this phase is the system overview diagram that shows actions, data, events,
capabilities, plans, agents, protocols and messages altogether. The detailed design
phase maps the agents’ internal capabilities with de capability descriptors. It also uses
the same notation of the system overview diagram to model agent, capabilities and
plans internal components.

34 Ricardo Melo Bastos and Marcelo Blois Ribeiro

Although presumed to have start-to-end support for agent systems modeling,
Prometheus does not have a requirements phase. It also describes scenarios, but does
not use case descriptions to do so. Many artifacts are textual descriptions of each
item. This lacks formality and difficult the traceability between de different levels of
abstraction. Prometheus also mix different systems views (static, functional and dy-
namic) in one diagram which difficult the system understanding.

5 Current and Future Work

Nowadays we are working on the specification of a process for the micro level
(agent) compatible with the models presented in this work, considering the integra-
tion of both modeling levels (micro and macro level) and implementation platforms.
We are using MASUP to develop a multi-agent based resource allocation system for
project management. The system uses a negotiation process to allocate the appropri-
ate employees to the project activities based on competences. We are also developing
a knowledge management system using MASUP that aims to capture and share
knowledge represented in OWL. The system uses the approach of personal agents
associated to the company employees to interact with the users.

As future works we intend to extend MASUP and integrate it with some agent im-
plementation platforms such as the SemantiCore. It is possible to map the design
artifacts to SemantiCore basic abstractions, such as: agents, action plans, actions, and
so on. For instance, the messages represented in the sequence diagram could be
mapped to effectors and the ACL speech acts coordinated by the action plan control-
ling mechanism in the Execution component (which is responsible to coordinate the
agent actions in the society).

6 Conclusion

This work proposed a process which extends RUP to develop agent-oriented systems.
The models produced in each activity of the process are specified through successive
refinements using use cases as the reference to express the system requirements. The
design model takes into account the implementation infrastructure required to imple-
ment the solution using a multi-agent approach.

The main contribution of this work comprehends a consistent system view based
on integrated models guiding the developers from the system requirements to the
implementation platform mapping. Other contributions are:

— The process does not direct the designer to the multi-agent solution at the first
hand such as other processes presented in the literature. The process indicates
where the designers must check if the multi-agent solution is appropriate for the
problem.

— RUP is a well accepted software industry process. Extending RUP reduces the
learning curve needed to understand a new software development process.

— The models constructed are based on diagrams extended from UML and AUML.
This similarity facilitates the comprehension and use of the diagrams.

— The process evolved from previous versions developed in 2001 as a result of their
application for multi-agent planning solutions.

MASUP: An Agent-Oriented Modeling Process for Information Systems 35

References

10.

11.

12.

13.

. Kruchten, P., The Rational Unified Process — An Introduction, Addison-Wesley, 2000
. Jennings, N.R. et ali., “Using intelligent agents to manage business processes”, Proceed-

ings of Practical Applications of Intelligent Agents and Multi-Agent Technology —
PAAM’96, London, UK, 1996.

. Castro, J., Kolp, M., Mylopoulos, J., “Towards Requirement-Driven Information Systems

Engineering: The Tropos Project”, Information Systems, 27, (2002) 365-389

. Odell, J., Parunak, H.V.D. Bauer, B., “Extending UML for Agents”, Proceedings of the

Agent-Oriented Information Systems Workshop at the 17th National Conference on Artifi-
cial Intelligence, Austin, TX, (2000) 3-17

. Blois, M., Lucena, C., “Multi-Agent Systems and The Semantic Web - The SemanticCore

Agent-based Abstraction Layer”, Proceedings of the 2003 ICEIS - International Confer-
ence on Enterprise Information Systems, Porto, 2003.

. DeLoach, S.A., “Multiagent Systems Engineering”, International Journal of Software and

Knowledge Engineering, vol. 11, no. 3, (2001) 231-258

. Bauer, B., Miiller, J.P., Odell, J., “Agent UML: A Formalism for Specifying Multiagent In-

teraction”, Agent-Oriented Software Engineering, Lecture Notes in Computer Science,
Springer-Verlag, Berlin, (2001) 91-103

. Parunak, H.V.D. Applications of distributed artificial intelligence in industry. In: O’Hare,

G.M.P.; Jennings, N.R. (Eds.). Foundations of distributed artificial intelligence. New York:
John Wiley & Sons, 1996.

. Poslad, S., Buckle, P., and Hadingham, R. “FIPA-OS: the FIPA agent Platform available as

Open Source”, Proceedings of the Fifth International Conference on the Practical Applica-
tion of Intelligent Agents and Multi-agent Technology, PAAM, Manchester, 2000, pp. 355-
368.

Busetta, P., R"onnquist, R, Hodgson, A. and Lucas, A. JACK Intelligent Agents - Compo-
nents for Intelligent Agents in Java. Technical report, Agent Oriented Software Pty. Ltd,
Melbourne, Australia, 1998.

FIPA Communicative Act Library Specification. Disponivel em

http://www fipa.org/specs/fipa00037/

Zelm, M. et ali., “The CIMOSA business modelling process”, Computers in Industry, 27,
p-123-142, 1995.

Winikoff, M., Padgham, L. “Prometheus: A Methodology for Developing Intelligent
Agents (2002)”, Proceedings of the Third International Workshop on Agent-Oriented
Software Engineering, AAMAS, 2002.

Composition of a New Process to Meet Agile Needs
Using Method Engineering

Massimo Cossentino and Valeria Seidita

Istituto di Calcolo e Reti ad Alte Prestazioni,
Consiglio Nazionale delle Ricerche Viale delle Scienze, 90128 Palermo, Italy
{cossentino,seidita}epa.icar.cnr.it

Abstract. The need of developing a new software engineering process to allow
the quick prototyping of some robotic applications and meet the requests by some
companies for a development process that was shorter than PASSI, gave us the
opportunity of applying our studies on the assembling of a new SEP by reusing
parts (called method fragments) from other processes. In this paper we discuss
our approach that, starting from the method engineering paradigm, adapts and
extends it considering specific agent-oriented issues like the multi-agent system
meta-model. The final result of our experiment (Agile PASSI) is presented to-
gether with the requirements that motivated its structure.

1 Introduction

Many different design methodologies for multi-agent systems can already be found in
literature and nonetheless further works propose brand new approaches or the exten-
sions of existing ones. We think (but the opinion is largely shared in the scientific com-
munity) this happens because each methodology has been conceived to solve a specific
problem in a fixed context and this strongly limits the possibility of reusing it (without
significant changes) in a different situation. Several developers respond to their need
of designing a specific system in some productive context by creating a specific design
methodology; this implies a big effort and the cost of developing a MAS (multi-agent
system) becomes higher than the comparable object-oriented solution (it is worth to no-
tice that in the object-oriented context the Unified Process is an accepted standard and
designers does not need to add the design process construction cost to the development
effort).

A new branch of Software Engineering, called Method Engineering [1, 2] proposes
to create a new methodology starting from existing methodology parts, called method
fragments, that a method engineer defines and stores in the method base. When a
method engineering wants to design a new methodology, he extracts and assembles
the fragments (each one composed of some work to be done, the resulting artifacts and
supporting guideline) in order to obtain a methodology that is suitable for his specific
needs. Because of the great number of methodologies from which method fragments
can be extracted, it is necessary to represent them in a standard way and to have a def-
inition of the method fragments that could fit it. This work consists in a re-engineering
process [3] of existing methodologies to identify and extract fragments that could be

R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 36-51, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Composition of a New Process to Meet Agile Needs Using Method Engineering 37

used in the new methodology construction process. We think that in the AOSE (Agent-
Oriented Software Engineering) context, some confusion still exists among the use of
the terms process, methodology and method. In order to avoid misunderstandings, in
this work, from now on, we decided to refer to the (design) process (avoiding the use
of the word methodology) meaning with it the collection of phases, activities and steps
that produce the project deliverables. The term method will be used with the meaning of
a way of performing some kind of activity (at whatever level) within the design process
(this includes techniques, artifacts, and guidelines).

As a consequence of this adopted terminology, we will refer to the final result of the
method engineering activity as a new process or indifferently as SEP (Software Engi-
neering Process). It will be composed by a set of method fragments, each one of them
specifying which phase/activities or more generally work definitions should be carried
on and by which stakeholders. The most frequent aim of these work definitions is to
produce/refine one or more artifacts (text documents, diagrams, ...) and in so doing
they often refer to some kind of style template (text documents) or modeling language
(diagrams). This process in order to be successfully applicable should be complemented
by some guidelines that will help the involved stakeholders in performing their duties
according to some defined best practices. The process will also prescribe in which se-
quence the phases and activities will be executed and if iterations should be done or
feedbacks provided to previous items; this often relates to some common models like
the waterfall [4] and evolutionary [5] (including iterative and incremental) ones.

Before proceeding to fragments assembling, we need to describe and represent these
parts in a standard way so to make easy the composition of parts coming from different
processes. The first step of this work consists in the creation of the meta-model that
will be used to describe the existing processes and the multi-agent system structure. An
important contribution to the solution of the first issue comes from an OMG specifica-
tion, the Software Process Engineering Metamodel [6]; this is the natural candidate to
become the adopted meta-model process, since it is already an accepted standard in the
0O context. We have exploited the possibilities offered by SPEM in the specific agent-
oriented context obtaining interesting results in the modular representation of PASSI
[7] and the method fragment extraction from it, using the standard definition of method
fragment [8]). In this paper we will present our approach to the reuse of these frag-
ments for assembling a new process (Agile PASSI) that satisfies our development needs
of specific robotic application.

The paper is organized as follow: in the next section we present an introduction to
the key topics of this work: method engineering and agile processes; in section 3 we
present our general approach to the new process composition and related method frag-
ments selection; in section 4 we quickly present the PASSI process from which we have
extracted the method fragments; in section 5 we report the results of our experiment,
and finally some conclusions are drawn in section 6.

2 Theoretical Background

In studying the solutions presented in this paper we considered a specific problem, the
rapid development of an agent-oriented application that needs a low level of quality
in the design and its documentation. This brought us to identify the need for an agile

38 Massimo Cossentino and Valeria Seidita

process that could be supported by some design tool. Taking profit of our previous
experience with the PASSI process [9], patterns reuse [10], and related design tools
[11], we conceived an agile version of PASSI by reusing some of its parts and building
up the new process. This corresponds to apply the method engineering approach that
will be discussed in subsection 2.1 to the composition of this process. All of these issues
will be discussed in the following sub-sections.

2.1 Agent-Oriented Method Engineering

In order to build our new design process we adopted (and extended) the method en-
gineering paradigm [12][13][14]. According to this approach, the new SEP (Software
Engineering Process) is built by assembling pieces of the process (method fragments)
[2][1][3] from a repository of methods. In this way we could obtain the best process for
our specific needs. We chose this approach because, in the last years, it proved success-
ful in developing many object-oriented applications, for example information systems
[15], and is now collecting a growing interest from the agent community[16][17].

Some differences exist between the approach we used in building Agile PASSI and
the cited approaches in the object-oriented context; the most relevant one is that the OO
context refers to the object concept and related model of the object oriented system,
while we refer to a MAS meta-model, that is a structural representation of the elements
(agent, role, behavior, ontology.. . .) that compose the actual system with their compos-
ing relationships. We built Agile PASSI by adopting the MAS meta-model represented
in Figure 2, that will be presented more in details in sub-section 3.1.

Figure 1 presents what we think to be the correct process for composing a new SEP
under the evolution of the method engineering paradigm that we call agent-oriented
method engineering. The process begins with the introduction in the method base of the
fragments extracted from available processes and the specifically created new ones; then
the designer (or better the method engineer), before building the new SEP, identifies
the elements composing the meta-model of the kind of MAS he wants to build. The
composition of the new SEP is performed under the assistance of some specific software
tool, called CAPE (Computer Aided Process Engineering) or CAME (Computer Aided
Method Engineering) depending on its process or method-oriented vocation. This tool
will allow the selection of the right method fragments from the method base and will
permit their introduction in the selected (or specifically designed) process model.

In this process, the definition of the MAS meta-model will help at both a logical and
practical level. Firstly this will be useful in the method fragment selection phase (avoid-
ing the selection of methods dealing with elements that are not present in the defined
MAS meta-model) and secondly, the same fact of clearly declaring the structure of the
system will allow the design tool to check for model coherence and to find not com-
pletely defined parts. Once the new SEP has been composed, the same CAPE/CAME
tool should permit the instantiation of a simpler tool (a CASE, Computer Aided Soft-
ware Engineering, tool) that will be used by the designer when designing a system to
solve some specific problem.

Agile PASSI has been constructed according to this process and in defining/compos-
ing our fragments we used a CAME tool (MetaEdit+ by Metacase) that offered a spe-
cific support for the composition of a process from existing fragments.

Composition of a New Process to Meet Agile Needs Using Method Engineering 39

o] ;’F
@ o
MAS Meta-Model
New Method(s)

@ Method

Fragments Method
Extraction

—©

New Process
Composition

New Process

Existing Processes Base
CAPE/CAME CASE Tool
Tool Instantiation
-
i Deployment o2] .
= - -— ;['I <¢——| System Design Specific
L . 5] Problem
o
MAS running MAS Model

on agent platforms

Fig. 1. The adopted Agent-Oriented Method Engineering process.

2.2 Agile Processes

Classic SEP are well disciplined and heavily oriented to make a process predictable and
have a great stress on planning. As a reaction to this way of developing a software,in the
last years a new kind of processes, called lightweight in a first time but now known as
agile, has been developed. An important difference between the two kinds of processes
is the smaller quantity of documentation produced in the second case, in fact agile
ones are code-oriented, being source code the key element of documentation, and by
modeling with little increments and iterations they can easily face changes. In Agile
processes the consequence of an iterative development is to realize working subsystem
that have not (yet) all the functionalities of the final system, but when integrated and
tested, they will provide the requested features. We can say that agile processes (often
called agile methodologies) are not complete processes but they are a supplement to the
already existing ones, they begin where the other fault or better where the other needs
changes in order to perceive their objective. Reexamining PASSI we used principles
and techniques of agile processes [18] in order to create a lightweight SEP, simple,
easy to use and principally based on code production rather than on documentation
(that is still requested, but mostly when it can be automatically produced), besides we
considered the sequence of activities defined in one of the most used agile approaches,
Extreme Programming [19]: (i) Planning, (ii) Designing, (iii) Coding, and (iv) Testing;
this sequence will constitute the center of the proposed SEP.

3 The Proposed Approach

This section proposes our approach to the composition of a new process. In this spe-
cific work we will apply our ideas to the reuse of PASSI fragments in order to build

40 Massimo Cossentino and Valeria Seidita

a new process (Agile PASSI) accordingly to some requirements presented later. In our
research activity we decided to adopt existing standards whenever possible in order
to remain as close as possible to industrial needs in this direction; for this reason we
adopt: SPEM (Software Process Engineering Metamodel) by OMG [6] in modeling our
processes (and related fragments), UML (extending it when necessary) in modeling our
artifacts; FIPA [20] as the reference agent architecture and XML for data representation.

In creating a new process, we consider that this essentially is a design activity by
itself and as such it should be ruled by some kind of design process. The design process
we adopt (to design a new process) is composed of four phases: requirements analysis,
process model design, fragments selection, and fragments integration (it includes the
assembly and adjustment activities performed to adapt the fragments to the new pro-
cess). Further iterations in this sequence of phases should aim at process maturity as
described in the CMM [21] but these aspects are out of the scope of this paper.

The Requirements Analysis phase, consists of the identification of the important
features of the process under construction; for instance the need of an highly detailed
level of design that could derive from a defense contract project. Another example could
be the indisputable dependability requested to a mission critical system like an avionic
one. The Process Model Design consists of the selection of the process model (wa-
terfall [4], evolutionary or incremental [5], transformation [22], spiral [23], ...), the
phases that constitute it and other process level requisite (for instance the conditions
that enable each new iteration). We consider situational requirements as the most useful
guidance for selecting the right process model. The need of rapidly facing changing
requirements could bring to the adoption of an evolutionary process while, conversely
the need of a very formal development process, with high quality level insurance could
lead to the adoption of some IEEE guidance [4][24] and therefore to the selection of
a waterfall model. The Fragments Selection phase aims at identifing the best frag-
ments for achieving the process goals (according to the requirements identified in the
first phase). Some authors (Ralyté et al. [2]) identify method fragments (called ’chunk’
in that work) using a process-driven very structured and completed heuristic. We think
that this top-down method, although very clear and well defined is not sufficient to meet
all the requirements (that are often expressed also in terms of deliverables and archi-
tecture of the system to be developed). For this reason we found useful to complement
a process driven selection activity with another data-driven one that considers aspects
like diagrams/other documents to be produced and the system architecture according
to some kind of MAS (multi-agent system) meta-model. From the process-driven point
of view, we consider four different levels of method fragment granularity according to
the position of the fragment in the process (in this classification we adopt the SPEM
terminology): Phase (highest level parts of the process, usually characterized by an en-
try condition, a goal and the sequential constraint, for instance System Requirements
and Agent Society in PASSI), Work Definition (a substantial part of the operations to be
performed in the process, it usually is composed of several lower level elements; for in-
stance Agent Identification, and Domain Ontology Description in PASSI, see section 4),
Activity (usually the smallest reusable part of a process, an activity is composed by the
tasks, operations, and actions that are performed by a role or with which the role may
assist, for instance Use Case Identification and Roles Dependencies Analysis in PASSI

Composition of a New Process to Meet Agile Needs Using Method Engineering 41

[7]), Step (the atomic elements that compose an activity, for instance the different steps
of the heuristic used for identifying agents from use cases in PASSI).

The selection of method fragments (that in our approach could be at the Phase, Work
Definition or Activity level of granularity) is performed working on two dimensions:
the process dimension and the system architecture dimension. The process dimension
enables a zooming on the analysis done during the process model design and considers
lower level features of the process. For instance at this stage we evaluate the need for a
specific attention on security (from which we will deduce the importance of introducing
some specific method fragment). Essentially in this phase we first select the phases we
want to introduce in the process (while some process models, like the waterfall one,
already prescribe these phases, some others leave a considerable level of degree in this
choice), and then we select the lower level fragments inside them. In so doing we follow
some criteria:

Process completeness: all phases (and their activities) of the process are to be cov-

ered by appropriate method fragments;

— Process coherence: generally speaking, each fragment refers to some kind of ‘philo-
sophical’ or ‘methodological’ approach to the solution of the problem it faces. It
makes no sense to introduce fragments belonging to contrasting approaches in the
same process;

— Process applicability: the selected fragments should compose a process that is re-
alistic (not too complex or simplistic for the faced problem) and lead to the final
solution in an optimal (or at least acceptable) way (in terms of cost and time);

— Contracts accomplishing: each fragment has some specific preconditions that should
be enacted by previous parts of the process and when it has been applied, it gener-
ates some postconditions that could trigger the following fragments;

— Stakeholders adequacy: it consists in selecting a set of fragments where the skills
required for involved roles (analyst, architect, programmer, ...) are adequate to the
situation (company, developing team, ...) where the process will be applied;

— Stakeholders satisfaction: people involved in the process application play a decisive
role in the success of the project. Their expectancy in terms of the kind of work they
will participate, is an important factor for the selection of fragments.

— Specific requirements: they could help in the selection of some fragments. For in-

stance the need of designing a real-time system will induce to consider fragments

that deal with time-related aspects of the design.

In the system architecture dimension we define the MAS meta-model and from it we
deduce the need for specific fragments that with their resulting artifacts could contribute
to the definition of a system obeying to the defined meta-model. We now deduce the
models and views that are necessary to define and refine the elements of the system
(this in someway resembles the product perspective of Brinkkemper et al. in [3]).

During the Fragments Integration phase, the selected fragments are disposed in
the right position inside the process and when necessary they are adapted to the new
context. Method fragment contracts (preconditions required by each fragment and post-
conditions enacted by it) are used to verify the possibility of directly connecting some
fragments. An interesting approach to the adaptation of fragments is described in [25].

42 Massimo Cossentino and Valeria Seidita

Implementation Agent Implementation Task 1 |Agent Interaction Protocol
.H -Name : String
1 N
T
] |
1 1
Task Message
Agent ‘% -name : String -Comm_act : Performative
-Name : String .
-Knowledge : Ontology 1
1.
1

0.* 1 Communication

Ontolo
-Name Y

-Exchanged Knowledge : Ontology
-Content Language

* 0

Non Funct. Req. Requirement I_

Concept Action Predicate
-Act

Fig. 2. The Agile PASSI MAS meta-model.

3.1 The Agile PASSI Process Composition Experiment

The reported experiment started from two different motivations, the first was that we
needed a short design process to let designers focus on the implementation of relatively
small robotic applications; the second motivation was that during the development of
large projects some of ours industrial partners underlined the benefit that could come
from the availability of a versatile process that could substitute PASSI in the develop-
ment of minor parts of the whole project. Because of space concerns, in the following
we will only refer to the first motivation but the other has been considered too during
the Agile PASSI construction and the resulting process proved good in the developing
of non robotics applications too. Our robotic systems are deployed on mobile robots
moving at a relatively low speed (only a few meters per second) and usually performing
missions related to the use of cognitive capabilities (for example we designed systems
for museum guide, surveillance and environment discovery applications). We now want
to design a process that, taking profit of the successful experience already done with
PASSI, could be the best solution for this kind of problems in our laboratory context.
The requirements that we could identify for our new process are centered on the
main goal of not distracting developers from their main objective of implementing/
tuning some kind of new algorithm with a long design process; nevertheless, we do
still need to maintain a reasonable quality of design documentation for enabling the
transferred knowledge among people in our laboratory. Another wish is related to the
possibility of quickly reusing contributions coming from other projects in order to re-
strict the effort related to the development of a new application to the solution of its
novelty aspects. For instance, in a robotic application great parts of already existing
systems can be reused both from the algorithmic (general navigation solutions like path
planning and obstacle avoidance) and structural (communications, resource sharing and

Composition of a New Process to Meet Agile Needs Using Method Engineering 43

data caching) points of view. As regards the response time of the developed systems,
our real-time constraints are not very tight (as already said, ground robots move rela-
tively slow) but nonetheless the possibility of explicitly designing concurrent actions
and time relationships among them is highly desirable in order to optimize the perfor-
mance of a system that because of the use of low efficiency agent platforms (Java-based)
could otherwise bring to an unacceptable decay in performance if no specific attention
is given to this problem. We think that all of these issues could be satisfied by using
an agile process that supports a light (manual) design phase while encourages the reuse
of existing contributions in form of patterns and (automatically) produces a consistent
documentation at different level of abstractions.

As regards the other dimension we consider in our composition approach (the sys-
tem architecture), the requirements of the new process regard our decision of signifi-
cantly reducing the dimension of the conventional PASSI MAS meta-model [26] be-
cause of the direct relationship that exists between the number of elements of the meta-
model and the design artifacts (and activities). The chosen MAS meta-model is reported
in Figure 2, it is composed of four different categories of elements: requirements (func-
tional and non functional requirements), domain ontology (concept, predicate, action),
agent logical (abstract) structure (agent, task, communication, message, agent interac-
tion protocol), and agent implementation structure (implementation agent and imple-
mentation task).

In this meta-model, the concept of agent represents the entity performing the sys-
tem functionalities. Each functionality descends from one or more requirements elicited
during meetings with clients, users, developers and designers and then represented in a
conventional use case diagram. Agent knowledge is described in terms of instances of
the domain ontology, that is a composition of concepts (entities and categories of the
domain), predicates (assertions about elements of domain) and actions (that agents can
perform in the domain, so affecting the status of concepts). In Agile PASSI we think to
an agent as composed of tasks representing a portion of its behavior and embodying its
capabilities of pursuing a specific goal. An agent uses communications to realize its so-
cial relationships and asking for collaborations from other agents. Each communication
is composed of messages expressed in an encoding language and refers to an element
of the ontology, besides the flow of messages is ruled by an interaction protocol (AIP)

From all of these requirements we deducted some choices for our new process:

— We decided to adopt an agile process. This introduces a specific structure of pro-
cess model: (a) it should be short (composed of only a few phases), iterative, and
incremental (as a consequence we need some iteration planning activities) and (b)
a specific attention is devoted to coding and testing in order to have a frequent de-
livery of functional portions of the final system; this solves the developer "anxiety’
of focusing on algorithm implementation rather than system design.

— The process should be composed of a quick design phase and should encourage the
reuse of portions of existing design artifacts and applications in form of patterns; it
should enable the automatic production of a consistent documentation at different
levels of abstraction by re-engineering the produced code.

— The design aspects we decided to maintain from conventional PASSI are related to
the initial part of the process (use case based requirements analysis) and the agent

44 Massimo Cossentino and Valeria Seidita

[New complete iteration]

[Refactoring iteration]

-0 M M N))

Requirements Agent Society TestPlan Coding Testing

Fig. 3. The phases of the Agile PASSI process.

society model (functionality-based agents identification and a detailed domain on-
tology design). This satisfies the expectancy of already skilled PASSI designers that
do not want to study a totally new process.

— Finally, the process has to be supported by a specifically conceived design tool in
order to limit all the operations that are performed ‘by hand’ (this also includes
design documentation production) because they contribute in significantly slowing
down the process and could introduce mistakes in the final result.

The resulting process is reported in Figure 3 and it is composed of five different
phases: (i) Requirements where the new iteration is planned (in terms of risks and re-
quirements to be faced) and a use case based analysis of system requisites is performed;
(ii) Agent Society where the agents that will constitute the system are identified and the
domain application ontology defined; (iii) Test Plan where starting from requirements,
a detailed plan of the test that will be applied to the code is prepared; (iv) Coding where
code is produced (with patterns reuse); and (v) Testing where the produced portion of
the system is tested accordingly to the previously prepared test plan.

4 PASSI Description

PASSI [9] is a process for multi agent systems development that covers all the design
activities from the requirements analysis to the system implementation and deployment.
The design work is carried out adopting five phases composed by twelve sequential and
iterative work definitions used to produce the MAS specification.

The phases and work definitions of PASSI (in Figure 4 a SPEM diagram represent-
ing them) are:

1. System Requirements. It is composed of four different work definitions and pro-
duces a description of the functionalities required for the system and an initial de-
composition of them accordingly to the agent paradigm. The four work definitions
are: (i) the Domain (Requirements) Description, where the system is described in
terms of functionalities; (ii) the Agent Identification where agents are introduced
and the already identified requirements assigned to them; (iii) the Role Identifica-
tion where agents’ interactions are described using traditional scenarios; (iv) the
Task Specification where the operational plan of each agent is draft.

2. Agent Society. It composes a model of the social interactions and dependencies
among the agents of the solution. It is composed of four work definitions: in the
Domain Ontology Description the elements occurring in the system domain are rep-
resented in terms of concepts, predicates, actions and relationships among them; in

Composition of a New Process to Meet Agile Needs Using Method Engineering 45

the Communication Ontology Description the focus is on agent’s communications
that are explained in terms of referred ontology, content language and agent in-
teraction protocol; in the Role Description distinct roles played by agents in the
society and the involved tasks/behaviors are detailed; in the Protocol Definition
non-standard agent interaction protocols are defined.

3. Agent Implementation. It is a model of the solution architecture in terms of re-
quired classes and methods. It is composed of four work definitions organized in
two streams of activities (structure definition and behavior description) both per-
formed at the single-agent and multi-agent levels of abstraction.

4. Code. It is a model of the solution at the code level. It is largely supported by
patterns reuse and automatic code generation.

5. Deployment. It is a model of the distribution of the parts of the system across hard-
ware processing units. The Deployment Configuration work definition, describes
the allocation of agents in the units and any constraint on migration and mobility.

Testing in PASSI is divided in two different stages: the Agent Test where each single
agent is tested after its implementation (Code phase) and the Society Test where the
whole multi-agent system is tested (after the Deployment phase).

This great number of steps may take a long time to obtain the first prototype code.
Also, the process is iterative both among the phases and in the whole life cycle; this
configures PASSI as a traditional process in which the coding phase is positioned some-
how late in the process and like many other classical approaches it is oriented to high
level documentation production, and it is more adequate for projects with a low level of
changes in requirements.

From PASSI we extracted several fragments some of which will be reused or adapted
for the creation of the Agile PASSI process. In the following subsection we will describe
the PASSI method fragments extraction process.

4.1 PASSI Fragments

Before performing the fragments extraction from PASSI, we re-engineered it in order
to represent all the process aspects (activities, artifacts, constraints and conditions) in
a way that could enable the method fragments identification. SPEM (Software Process
Engineering Metamodel [6]) was adopted as a process meta-modeling language; this
language allows an intuitive description of the software development process and its
components and includes an UML profile that can be used to graphically represent the
process using UML activity, class and use case diagrams. The core of SPEM is in its
conceptual model: a software development process can be seen as a collaboration be-
tween abstract active entities called Process Roles that perform some operations called
Activities on concrete entities called Work Products.

We represented the PASSI process in SPEM using two sequential steps, in the first
we considered the whole process with the involved disciplines, in the second we detailed
the separate phases and work definitions, following the conceptual model described
above and the method fragment structure already defined in section 3. Starting from
the procedural representation of PASSI composed of five phases (Figure 4), we decided
to extract one different fragment for each one of the PASSI work definitions (refer

46 Massimo Cossentino and Valeria Seidita

N .
System Ren-Jirements \\\ i i - Depk{%ent
Syst. Deploy
Req. ment
Model Model
Agént Agent A Code ‘\\
Society Impl. \ Model
Model Model \ \
/ \
4 \ \
Agent Society Agent Implementation Code

Fig. 4. The phases of the PASSI process.

to the beginning of this section for their list). In so doing we obtained a substantial
simplification of our new process creation work: the assembly process will only deal
with two levels of fragments (phase and work definitions); another consequence is that
their modifications during fragments integration will be easier since it will mainly deal
with work definition level fragments (and rarely with their composing activities).

At the end of our PASSI re-engineering and fragments extraction work we obtained
seventeen work definition level fragments and five phase level ones; they constitute the
fragments repository from which we selected the elements to compose the Agile PASSI
process

5 The Resulting Agile PASSI Process

Starting for the considerations proposed in the previous sections we selected from the
PASSI process some fragments that we consider in line with the new process require-
ments (see subsection 3.1) and our ‘philosophy’ in agents development (use case based
agents identification and central role of ontology); the selected method fragments: Do-
main Requirements Description (a description of the system requirements in terms of
use cases), Agent Identification (the clustering of system functionalities into packages
associated to agents), Domain Ontology Description (an ontological description of the
solution domain in terms of concepts, predicates and actions), Code reuse (a compre-
hensive pattern reuse technique that allows the automatic production of code) and Test-

Composition of a New Process to Meet Agile Needs Using Method Engineering 47

[New complete iteration]

[Refactoring iteration]

Pattern MAED
Reuse \ \

%
= —DED
Domain Test Plan é.

Plannmg Ontology |
Dascnpuon DOD

lteration
Plan

MASD

%
- DaD DED— AN -

Sub Domain Goch

Requirements Description joepiicaion :T:rt

Code Test
Requirements Agent Society Test Plan Code Testing &

- o T

Work UML Text

Definition Diagram Document

Fig.5. The Agile PASSI process.

ing (of agents and societies). The new Agile Process (reported in Figure 5 in form of
a SPEM activity diagram), resulting from the composition of these work definitions
in the five phases of the general model proposed in Figure 3, is composed of eight
work definitions (Planning, Sub-Domain Requirements Description, Domain Ontology
Description, Agent Identification, Pattern Reuse, Coding, Test Plan, Test) and eleven
artifacts (seven UML diagrams and four text documents).

More in details, the first phase (Requirements) consists in an high level analysis of
the system under construction through two sequential work definitions:

— Planning, where through the communication among team elements and sequential
iterations the problem is divided into sub-problems so to make possible a correct
risks management and activities scheduling. This first activity should result in a
text document (Iteration Plan) summarizing the considerations and the solution
proposed by team elements.

— Sub Domain Requirements Description, a functional description of the system
through common UML use case diagrams. This work definition corresponds to the
PASSI Domain requirements Description, the ‘Sub Domain’ prefix has been added
to stress the incremental concepts that are behind this process.

In the Agent Society phase, developer identifies the agents involved in the solution
(assigning the previously identified functionalities to them), and then he defines the
ontology of the domain. The phase is composed of two parts:

— Agent Identification, in this activity another use case diagram is composed, starting
from the previously produced one, clustering use cases in packages that represent
the functionalities assigned to agents; in this way, each agent will be responsible
for the satisfaction of some requisites.

— Domain Ontology Description, the domain is expressed in terms of its ontology
through a class diagram where classes represent concepts, predicates and actions.

48 Massimo Cossentino and Valeria Seidita

We expect that this two work definitions are iteratively carried on ; after the iden-
tification of an agent, the definition of its knowledge and actions starts and this could
bring to some changes in the list of functionalities assigned to it.

Testing is a continuous activity during an agile development process, in Agile PASSI
it is divided in two phases; the first is Test Plan, that has been conceived referring
to the agile processes principles and particularly to eXtreme Programming [19] rules;
according to these rules the testing phase starts before the coding activity, the de-
signer/programmer has to first prepare the test plans and then coding the component
that must satisfy them (this will be proved during the following Testing phase).

The Code phase is composed of two strictly coupled parts.

— Patterns reuse, where we try to reuse portions of precedent projects through the
reuse of patterns of services (interactions among agents), agents, tasks and actions.
In this activity the Agent Factory tool proves very useful allowing us the automatic
generation of relevant portions of code and a reduction of development time and
costs.

— Coding, consists in the introduction of the code that cannot be derived from patterns
(for instance problem specific algorithms).

Coding phase is the core of Agile PASSI and it is largely supported by a tool, APTK
(Agile PASSI Toolkit), that is an add-in of a commercial design tool (Metaedit+). APTK
offers several features to the designer, its main functionalities are:

— Automatic compilation of diagrams - this allows the partial drawing of some dia-
grams, for instance the Agent Identification diagram is initially drawn reporting the
use cases of the previous work definition, and the complete design of some others
starting from the code re-engineering and other design information (like applied
patterns), for instance the Communication Ontology diagram is composed in this
way.

— Support of changes - our tool, interacting with the Metaedit+ functionalities, allows

the user to modify all the design models (even those automatically generated by the

tool), and to profitably perform an incremental and iterative development of the
project.

Consistency check - the developer can perform a check on all the generated mod-

els to verify their consistency or he can use the MetaEdit+ checking feature for

verifying the correctness and consistency of each single diagram.

Report and project documentation generation - APTK allows the creation of MS

Word or HTML documents representing all the design aspects.

Patterns reuse - the user interacts with Agent Factory, that is totally integrated with

APTK, to apply patterns to the system and generate their code.

Automatic code generation and reverse engineering - Code generation and reverse

engineering are entirely done by the Agent Factory application, through its integra-

tion in APTK.

Testing, after code completion, is the phase where the real test accordingly to the
previously defined test plans is performed.

Composition of a New Process to Meet Agile Needs Using Method Engineering 49

Agile PASSI has been created starting from conventional PASSI with the precise
aim of having a lighter design process that could fit the needs arising from the devel-
opment of small-medium size projects. As a consequence there are not fundamental
differences between the two processes with the exception of those that we can indi-
viduate between a classic SEP and an agile one. Even one of the most agent-oriented
aspects of a design process (the MAS meta-model) is not very different. In building Ag-
ile PASSI we referred to the MAS meta-model represented in Figure 2 whose elements
are a subset of the conventional PASSI MAS meta-model [26].

Being our process agile, it is iterative, composed by a low number of steps and it
strongly involves the end-user (or customer) during the development phases. These are
choices we did in order to be compliant with the agile manifest principles[18], and as
a consequence some of the phases of traditional SEPs are not considered (this is the
case of the system architecture design that is left to the agent society organization) or
performed very quickly. Quality assurance is enhanced by the large reuse of patterns, the
automatic production of relevant portions of code and the consistency check performed
by the tool on the design artifacts.

6 Conclusions and Future Works

This work started from the need of developing a new software engineering process
(SEP) that could allow the quick prototyping of agent-oriented applications. In pre-
vious experiences we used the PASSI process that proved good for the development
of medium-large size applications but it was too time consuming for the development
of smaller size applications. This gave us the opportunity of applying our studies on
the assembling of a new SEP by reusing parts (called method fragments) from other
processes. This approach, already known as method engineering in the object-oriented
context, is now diffusing in the agent-oriented community as a logical attempt of ratio-
nalizing and reusing the great number of development processes proposed in literature.

In this paper we discuss our approach that is composed of four phases: Require-
ments Analysis, Process Model Design, Fragments Selection, Fragments Integration. In
these phases we also consider specific agency peculiarities like the MAS meta-model
that differently from what happens in the object-oriented context is not a-priori known
and fixed, but it is one of the most important differences that can be found in the de-
velopment processes proposed in literature. The result of this work (the Agile PASSI
process) is finally presented starting from the requirements that motivated its structure.

In the future we aim at further detailing the different aspects of our work, by for-
malizing a sufficient number of techniques and guidelines that could efficiently support
the method engineer. As regards the Agile PASSI process, after having applied it in a
couple of small projects, we can say that it fully achieved the goals we were pursuing
from the methodological point of view, while the design tool (APTK) has still to be
significantly improved in order to reach the flexibility and extensive support offered by
the conventional PASSI support tool (PTK).

50

Massimo Cossentino and Valeria Seidita

References

Nk

0

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Brinkkemper, S., Lyytinen, K., Welke, R.: Method engineering: Principles of method con-
struction and tool support. International Federational for Information Processing 65 65
(1996) 336

Ralyte, J., Rolland, C.: An approach for method reengineering. Lecture Notes in Computer
Science (2001) 27-30

Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-modelling based assembly techniques for
situational method engineering. Information Systems 24 (1999)

Board, 1.S.: Ieee std 1074-1997, standard for developing software life cycle processes (1997)
Gilb, T.: Principles of Software Engineering Management. Addison-Wesley Reading (1988)
OMBG: Software Process Engineering Metamodel Specification. http://www.omg.org (2002)
Cossentino, M., Sabatucci, L., Seidita, V.: Spem description of the passi process. Technical
Report 20-03, ICAR-CNR (2003) Available online at http://www.pa.icar.cnr.it/ cossentino/
FIPAmeth/metamodel.htm.

Foundation for Intelligent Physical Agents: Method Fragment Definition. (2003)
Cossentino, M., Sabatucci, L.: Agent system implementation. In Paolucci, M., Sacile, R.,
eds.: Agent-Based Manufacturing and Control Systems: New Agile Manufacturing Solutions
for Achieving Peak Performance, CRC Press (2004)

Cossentino, M., Sabatucci, L., Chella, A.: A possible approach to the development of robotic
multi-agent systems. In: IEEE/WIC IAT’03 Conference, Halifax - Canada (2003)
M.Cossentino, L.Sabatucci, S.Sorace, A.Chella: Pattern reuse in the passi methodology. In:
ESAW’03, Imperial College London, UK (EU) (2003)

Brinkkemper, S.: Method engineering: engineering the information systems development
methods and tools. Information and Software Technology 37 (1995)

Kumar, K., Welke, R.: Methodology engineering: a proposal for situation-specific method-
ology construction. Challenges and Strategies for Research in Systems Development (1992)
257-269

Saeki, M.: Software specification & design methods and method engineering. International
Journal of Software Engineering and Knowledge Engineering (1994)

Tolvanen, J.P.: Incremental method engineering with modeling tools: Theoretical principles
and empirical evidence (ph.d. thesis). Jyvaskyld Studies in Computer Science (1998) 301
Henderson-Sellers, B., Debenham, J.: Towards open methodological support for agent-
oriented systems development. In Far, B., Rochefort, S., Moussavi, M., eds.: Proceedings
of the First International Conference on Agent-Based Technologies and Systems, University
of Calgary, Canada (2003) 14-24

Juan, T., Sterling, L., Winikoff, M.: Assembling agent oriented software engineering method-
ologies from features. In: Third International Workshop on Agent-Oriented Software Engi-
neering, Bologna - Italy (2002)

Beck, K., al.M. Beedle, van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R., Mellor, S.,
Schwaber, K., Sutherland, J., Thomas, D.: (Agile manifesto) http://www.agilemanifesto.org.
Wells, D.: (Extreme programming - a gentle introduction) http://www. extremeprogram-
ming.org.

O’Brien, P., Nicol, R.: Fipa - towards a standard for software agents. BT Technology Journal
16 (1998) 51-59

Paulk, M., Weber, C., Curtis, B.: The Capability Maturity Model for Software. Addison
Wesley (1995)

Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of Software Engineering. Prentice
Hall International (1991)

23.

24.
25.

26.

Composition of a New Process to Meet Agile Needs Using Method Engineering 51

Boehm, B.: A spiral model of software development and enhancement. IEEE Computer 21
(1988) 61-72

Board, 1.S.: Software life cycle processes (1998)

Ralyte, J., Rolland, C.: An assembly process model for method engineering. In: Proceedings
of the 13th Conference on Advanced Information Systems Engineering, CAISE’01, Inter-
laken (Switzerland) (2001)

Bernon, C., Cossentino, M., Gleizes, M., Turci, P., Zambonelli, F.: A study of some multi-
agent meta-models. In: Agent-Oriented Software Engineering Workshop (AOSE’04), New
York (USA) (2004)

A Generative Approach
for Multi-agent System Development

Uira Kulesza!, Alessandro Garcia!, Carlos Lucenal, and Paulo Alencar?

I PUC-Rio, Computer Science Department, LES, SoC+Agents Group,
Rua Marques de Sao Vicente, 225 - 22453-900, Rio de Janeiro, RJ, Brazil
{uira,afgarcia, lucena}l@inf.puc-rio.br
2 University of Waterloo, Computer Science Department, Computer System Group
Waterloo, Ontario, N2L 3G1 Canada
palencar@csg.uwaterloo.ca

Abstract. The development of Multi-Agent Systems (MASs) involves special
concerns, such as interaction, adaptation, autonomy, among others. Many of
these concerns are overlapping, crosscut each other and the agent’s basic func-
tionality. Over the last few years, several methodologies and implementation
frameworks have been proposed to support agent-oriented software engineer-
ing. Although these approaches have brought some benefits to improve the pro-
ductivity and quality on the MAS development, they present some restrictions.
First, agent-oriented methodologies are too high level and do not indicate how
to master the complexity of MAS concerns based on the object-oriented ab-
stractions. Second, implementation frameworks provide object-oriented APIs
for MAS development without providing guidelines for the modularization of
agent concerns. Moreover, neither of the proposed agent oriented-approaches
deals with the modeling and implementation of agent crosscutting concerns.
This paper presents a generative approach for the development of MASs that
addresses these restrictions. The proposed approach explores the MAS domain
to enable the code generation of heterogeneous agent architectures. Aspect-
oriented techniques are used to allow the modeling of crosscutting agent fea-
tures. The generative approach brings several benefits to the code generation
and modeling of agent crosscutting features since early development stages.

1 Introduction

Multi-Agent Systems (MASs) are composed of software entities that involve special
properties (concerns), such as interaction, adaptation, autonomy, among others. With
the growth of the Internet and the advances in networking technologies, the design
and development of MASs have risen in importance. However, the effort and cost of
designing and implementing MASs while satisfying quality requirements, such as
maintainability and reusability, are still deep challenges to software engineers. [10,
14]. None is more serious than the difficulty to deal with the modularization and
composition of multiple agent properties since early development stages [9, 13]. In
general, a MAS has multiple software agents with different properties to be composed
in different ways [9, 13]. Moreover these properties crosscut each other and the basic
agent functionality, making their modeling, modularization, and composition more
difficult.

Over the last few years, several methodologies and implementation frameworks for
agent-oriented software engineering have been proposed. Agent-oriented methodolo-

R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 52-69, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Generative Approach for Multi-agent System Development 53

gies [15, 27] propose modeling languages and techniques that allow MAS developers
to specify their systems using agent-oriented abstractions. Implementation frame-
works [1, 18] improve the productivity of MAS development by providing custom-
ized object-oriented APIs. Despite the advantages that these agent-oriented software
engineering approaches bring, each of them offers restrictions, such as: (i) most
methods and modeling languages proposed are too high level and do not indicate how
to master the complexity of these concerns based on the object-oriented abstractions;
(ii) on the other hand, implementation frameworks do not provide guidelines for the
modularization of agent concerns; (iii) agent-oriented methodologies and implementa-
tion frameworks also impose the use of MAS abstractions in the modeling and im-
plementation of these systems considering a particular point of view; and (iv) more-
over, neither of the proposed agent oriented-approaches deal with the modeling and
implementation of agent crosscutting concerns typically encountered in MASs [9, 11-
14]. As a consequence, these restrictions decelerate the development process and
affect negatively the reuse and maintenance of the MAS artifacts.

In this context, we have explored the integrated use of two software engineering
approaches for dealing with the mentioned restrictions: generative programming and
aspect-oriented software development. We believe that the combination of these soft-
ware engineering approaches can help to define a systematic and flexible MAS ap-
proach in order to overcome many of the restrictions presented by current MAS ap-
proaches.

Generative Programming (GP) [7] has been proposed recently as an approach
based on domain engineering [17, 23]. It addresses the study and definition of meth-
ods and tools to enable the automatic production of software families from high-level
specifications. GP promotes the separation of problem and solution spaces, giving
flexibility to evolve both independently. Problem space models the existing concepts
and features in a specific domain. Solution space consists of the components that are
used to build particular software systems. Code generators represent the configuration
knowledge in a generative model. They define how specific feature combinations in
the problem space are mapped to a set of software components in the solution space.

The use of GP in the definition of a MAS approach offers the potential to explore
the MAS domain systematically. It also allows the problem and solution spaces to
evolve independently, including issues related to the technologies used. Therefore, it
offers more flexibility to define and evolve the MAS high-level abstractions and ar-
chitectures used in the production of particular system families for this domain.
Moreover, GP advocates the clear definition of the mapping between high-level fea-
tures and implementation components by means of code generators. In this way, GP
addresses the lack of guidelines provided by agent-oriented methodologies during the
translation of high-level agent features to specific combinations of implementation
components. GP can also help to reduce the cost and effort of MAS development by
means of the code generation of agent architectures.

Aspect-oriented software development (AOSD) [19, 26] is an evolving approach to
modularize crosscutting concerns that existing paradigms (e.g.: object-oriented) are
not able to capture explicitly. Crosscutting concerns are concerns that often crosscut
several modules in a software system. AOSD encourages modular descriptions of
complex software by providing support for cleanly separating the basic system func-

54 Uira Kulesza et al.

tionality from its crosscutting concerns. Aspect is the abstraction used to modularize
the crosscutting concerns.

The use of aspect-oriented (AO) techniques makes it possible the modeling of sev-
eral MAS concerns that are often scattered in the design and code of multi-agent sys-
tems and implementation frameworks [9, 11-14]. Thus, AO abstractions are used in
our approach to capture several crosscutting concerns encountered in the implementa-
tion of agent architectures. Most of these crosscutting concerns are not captured by
the existing agent-oriented methodologies. Examples of such concerns are interaction,
autonomy, adaptation and collaborative roles. The use of AO techniques enhances the
maintainability and reusability of MASs, because the design and code of crosscutting
agent concerns can be modularized and are not intermingled with code of non-
crosscutting agent concerns.

This paper presents an aspect-oriented generative approach for the development of
MASs. Our generative approach explores specific features of the MASs domain to
enable the code generation of agent architectures. It allows software engineers in
dealing with several agent concerns in MASs from early development phases until the
system implementation. The generative approach for MASs defines a domain-specific
language, called Agent-DSL, for supporting the uniform modeling of several or-
thogonal (non-crosscutting) and crosscutting agent concerns. The approach also in-
cludes a generic and flexible aspect-oriented agent architecture [9, 13] to enable the
generation of different kinds of agents. Aspect-oriented abstractions are used to de-
sign crosscutting concerns encountered in the architectural definition of an agent.
Finally, the generative approach defines a code generator that maps abstractions of the
Agent-DSL to specific compositions of objects and aspects in the agent architecture.

The remainder of this paper is organized as follows. Section 2 presents our genera-
tive approach for MASs, detailing the domain analysis and design phases of its devel-
opment. Section 3 describes the implementation of the elements of the generative
approach. Section 4 shows the application of the generative approach to a case study.
Section 5 presents some related work. In Section 6, we offer our conclusions and
indicate the direction of future work.

2 A Generative Approach for Multi-agent Systems

The aspect-oriented (AO) generative approach explores the domain of multi-agent
systems (MASs) to improve their quality and productivity. The purpose of the genera-
tive approach is threefold: (i) to uniformly support crosscutting and orthogonal (non-
crosscutting) features of software agents starting at early development stages; (ii) to
abstract the common and variable features; and (iii) to enable the code generation of
AO agent architectures.

Figure 1 depicts our generative approach that is composed of:

(i) adomain-specific language (DSL), called Agent-DSL, used to collect and model
orthogonal and crosscutting features of software agents;

(i) an AO architecture [9, 13] that models a family of software agents. It is cen-
tered on the definition of aspectual components to modularize the crosscutting
agent features;

(iil) a code generator that maps abstractions of the Agent-DSL to specific composi-
tions of objects and aspects in agent architectures.

A Generative Approach for Multi-agent System Development 55

The development of the generative approach underwent a typical domain engineer-
ing process [7, 23], organized in three phases: domain analysis (Section 2.1), domain
design (Section 2.2), and domain implementation (Section 3).

In the domain analysis, common agent concerns encountered in MASs were mod-
eled using feature models [17]. This study was supported by our extensive work on
the development of several multi-agent systems [9-14] and on a survey of different
modeling languages, MAS architectures and platforms [25]. Section 2.1 details the
agent features modeled during domain analysis.

Domain design consisted of the specification of a generic and flexible AO agent
architecture [9, 13]. Each feature modeled in domain analysis was considered. Section
2.2 presents the specification of the AO agent architecture that makes it possible to
represent crosscutting agent concerns at the architectural level.

In the domain implementation, each of the elements of the generative approach
was accomplished. Agent-DSL was implemented using Eclipse Modeling Framework
(EMF) models [3]. The AO agent architecture was implemented as an AO framework
using Aspect] and Java programming languages. Finally, the code generator of the
generative approach was accomplished as an Eclipse plug-in. Section 3 details the
implementation of these elements.

Specification
of agent Agent-DSL
features e
B
\./ B @ Code
Frameworks > gl Generator
Components Code
Templates
JB =
./. \.//.\T/. AO Agent
\.//l n® Architecture
Classes and Aspects Generated
of the Agent

Fig. 1. The Generative Approach for MASs

2.1 Domain Analysis

During the domain analysis, recurring agent concerns of MASs were modeled using
feature models [17]. Feature models are used to represent common and variable fea-
tures of system families. We captured the different features associated with the agent
concept, including non-crosscutting and crosscutting agent features. Figure 2 depicts a
partial feature model produced during this phase.

56 Uira Kulesza et al.

A new kind of relation between features, called crosscuts relation, was introduced
in feature models in order to support the representation of crosscutting features. We
say that a feature A crosscuts a feature B, when either A or one of its subfeatures
depends and inspects B or one of the subfeatures of B. The term “inspect” means the
act of observing a feature. The following agent features were characterized as being
crosscutting: interaction, adaptation, autonomy, and collaboration. Each of them in-
spects elements of the knowledge feature in order to exhibit a specific agent property.
For example, the autonomy feature inspects changes on the knowledge feature in
order to detect the need for autonomous proactive behavior. Figure 2 presents the
crosscutting relationships between features and respective inspected features.

Agent / Role

Agenthood
crosscuts

P Autonomy‘ crosseuts 7] Interaction
5 Ne) crosscuts
Interaction
Behavior I ’

ProactiveAutonomy‘ l DecisionAutonomy ‘
DecisionPlan

Message
Sending

@)
AdditionalProperties

| Learning ‘ ‘ Mobility ‘ ‘Collaboration

Adaptation
1

‘ PIanAdaptatlon BellefAdaptatlon ‘

Goal Plan Message Belief
InternaIEvent

I__._I mandatory feature

‘ ProactiveGoal ‘

ReactiveGoal
Management

ReactiveGoal

DecisionGoal
Sensory

ExecutionAutonomy I
Behavior
C Strate []
Iﬁl optional feature
f ﬁ } alternative features

Q inspected features ‘ ThreadPool ‘ ‘ThreadPerRequest‘

Message
Reception

Legend:

Message

Fig. 2. Partial Feature Model of the Agent

Tables 1, 2 and 3 present the definition of the agent features presented in Figure 2.
Table 1 emphasizes the knowledge features, Table 2 describes the concerns common
to every kind of software agent (agenthood features), and Table 3 defines the optional
agent features (additional properties). The tables also indicate which agent concerns
are crosscutting and detail the respective inspected features. Learning and mobility
are not mandatory features in agent architectures and they have not been explored in
this work.

Table 1. Agent Knowledge Features

Agent Knowledge
Feature Description Crosscutting?
Belief eDescribes information about the agent itself and about the No
external environment.

Goal e Represents a specific agent aim to be achieved. No

e Set of actions to achieve an agent goal. No
Plan

o The plan execution involves the manipulation of beliefs.

A Generative Approach for Multi-agent System Development

Table 2. Agenthood Features

57

Agenthood (Basic Properties)

Feature

Description

Crosscutting?

Interaction

e Defines the agent ability to communicate with the environ-
ment.

e The agent receives and sends messages to the environment
by means of its sensors and effectors.

e External messages are translated to the agent ontology using
specific parsers.

eParsers translate internal messages to a specific external
representation.

Yes

o [t crosscuts, for
example, the
Knowledge feature
to inspect agent
plans that need to
send external mes-
sages.

¢ Defines changes in the agent knowledge or behavior.

e It encompasses belief adaptation and plan adaptation.

® Belief adaptation is responsible for interpreting received
messages from the environment and for manipulating its

Yes
It crosscuts the
Knowledge feature
to inspect belief

interaction, adaptation and autonomy.
e Each agent can play different roles.

Adaptation beliefs based on the message contexts. updates.
e Plan adaptation determines the plan the agent must exe- | ® Italso crosscuts the
cute whenever a new goal needs to be achieved. Interaction feature
to inspect messages
received.
e Instantiates and manages the agent goals. Yes
o It deals with three types of goals: reactive goals, proactive | ® It crosscuts the
goals, and decision goals. Knowledge feature
® Reactive goals are instantiated when the agent receives an to inspect belief
external request from other agents or environment compo- updates.
nents. e It also crosscuts the
Autonomy . X .) .
® Proactive goals are instantiated due to internal events that Interaction feature
occur, such as the end of a plan execution or the achieve- to inspect received
ment of a specific agent state. external messages.
e Decision goals are instantiated due to external or internal
events and are used to decide whether special reactive or
proactive goals could be instantiated.
Table 3. Agent Additional Properties Feature
Agent Additional Properties
Feature Description Crosscutting?
e The agent ability to cooperate with other agents through Yes
the performance of roles.
Collaboration o A role introduces to the agent extra features of knowledge,

2.2 Domain Design

Domain design consisted of specifying a generic and flexible agent architecture for
the domain at hand. Our domain design considered all the features modeled during
domain analysis. The AO agent architecture is a refinement of a previous work [11,
14]. It uses two kinds of components: (i) the Knowledge component that modularizes
the orthogonal features associated with the agent knowledge; and (ii) the aspectual
components that separate the crosscutting agent features from each other and from the
Knowledge component. Aspectual components represent crosscutting features at the
architectural level.

58 Uira Kulesza et al.

Figure 3 depicts the components of the AO agent architecture. We have used a new
notation to graphically represent an AO architecture. It is an extension of the
ASideML modeling language [4]. We developed this notation to enable the represen-
tation of aspectual components. An aspectual component may crosscut other aspectual
or non-aspectual components using its crosscutting interfaces. A crosscutting inter-
face specifies when and how the aspect affects one or more architectural components.
A crosscutting interface may both add new state or behavior in other components and
intercept (and modify) the behavior of components. Non-aspectual (normal) compo-
nents are represented in a similar way to UML [2] and offer their services through the
normal interfaces.

IBelief
Adaptation O

. IPlan
4 o |Adap tatl(ml Adaptation

% ,I'Knowledge
IMessage ‘/ éUpdating dSeerces
Reception IMessage
Sending

Knowledge

IExtrinsic “\
Runowledge

O

_Collaboration
~

IRole
Binding

1Goal { .
IExecution

“Creation
Legend: e~ utonomy
O =
aspectual component

component

crosscutting interface

PPOM

normal interface

Fig. 3. The Aspect-Oriented Agent Architecture

The Knowledge component models the orthogonal features (belief, goal, plan) re-
lated to the knowledge feature. It realizes two normal interfaces: (i) IknowledgeUp-
dating — to update the agent knowledge; and (ii) Tservices — to offer agent services.
The implementation (section 3.2) of this component is refined as a set of classes.

Each aspectual component was refined during the domain implementation (Sec-
tion 3.2) as a set of aspects and auxiliary classes, which are also part of the crosscut-
ting feature. The Interaction aspectual component models the interaction crosscutting
feature. It is composed of two crosscutting interfaces: (i) IMessageReception — which
introduces the capacity to receive external messages into the Knowledge component;
and (ii) IMessagesending — which crosscuts elements of the Knowledge component to
define specific points where it is necessary to send messages to the environment. It
also crosscuts elements of the Collaboration aspectual component to specify specific
points in collaboration plans where it also is necessary to send messages to the envi-
ronment.

A Generative Approach for Multi-agent System Development 59

The Adaptation aspectual component models the adaptation crosscutting feature. It
is composed of two crosscutting interfaces: (i) 1Beliefadaptation — which intercepts
services of the TMessageReception interface on the Interaction component in order to
update agent beliefs when new external messages are received; and (ii) TPlanAdapta-
tion — which intercepts services of the TknowledgeUpdating interface on the Knowl-
edge component in order to instantiate new plans when the agent needs to achieve a
specific goal.

Finally, the Collaboration aspectual component models the role crosscutting fea-
ture. It is composed of two crosscutting interfaces: (i) IExtrinsicknowledge — which
introduces new knowledge associated with the roles in the Knowledge component;
and (ii) TRoleBinding — which defines specific points in the Knowledge component
where agent roles are instantiated and bound to the agents.

3 Implementing the MAS Generative Approach

In this section, we describe the implementation of the elements of our generative
approach: (i) the Agent-DSL; (ii) the aspect-oriented agent architecture; and (iii) the
code generator.

3.1 Agent-DSL

Based on the feature models defined in the domain analysis (Section 3.1), we defined
a domain-specific language, called Agent-DSL. This language is used to specify the
agency properties that an agent could have to accomplish its tasks. It makes it possible
to model agent features, such as knowledge, interaction, adaptation, autonomy and
collaboration.

The Eclipse Modeling Framework (EMF) [3] was used to specify the Agent-DSL.
EMF is a Java/XML framework for generating tools and other applications based on
simple class models. By using this framework, it was necessary to define a model that
expresses the semantics of the Agent-DSL - in other words, the meta-model of this
DSL. EMF allows the specifying of a meta-model by using XML Schema, annotated
Java or UML modeling tools (e.g.: Rational Rose). After that, EMF uses this meta-
model specification to automatically generate Java code and Eclipse editors, which
allows to create and edit models that conform to this meta-model.

In order to use EMF to specify the Agent-DSL, we first translated the feature mod-
els to a UML class diagram. In this translation, we basically converted: (i) features to
classes; (ii) mandatory feature relations to UML composition relations; and (iii) op-
tional feature relations to UML aggregation relations. Also, specific characteristics of
each feature were introduced as class attributes. Then, this class diagram served as
input for EMF generating: (i) Eclipse visual editors that permit the creation and ma-
nipulation of Agent-DSL models; and (ii) Java classes to manipulate the instances of
Agent-DSL models. The latter are used by the code generator of the generative ap-
proach (see details in Section 3.3), during the customization of agent architectures.

Figure 4 presents the EMF visual editor that is used to create instances of Agent-
DSL models. The figure illustrates the specification of an agent used in a case study.
Section 4 presents additional details about this case study.

60 Uira Kulesza et al.

- X @ ExpertCommittes. mas X
Eb Fesource Set

E@ platfarm: frezource/expertCommittes/madelz/damain/E xpertCommittee. mas

Bl ievpetlommites;

e = 4 MultiAgent Spztem
.']'.{, JRE Syztem Library [JA%A 1.4] El- 4 Agent Fesearcherlserigent
E-{#= models <> Belief Agenda
--@ architecture -4 Plan UpdateCurriculumPlan
EE} darain -4 Goal UpdateCurriculumGoal
e @ E=pertCommittee. mas [=]-- 4 Role Chair

----- 4> Belief PapersList
----- 4 Belief ReviewersList
----- 4 Plan PaperDistributionPlan
=~ <= Autonomy

E|<} Reactive Autohormy

i @ Reactive Goal PaperDistibutionGioal

- < Interaction
<4 Effectar JADEEHector
<4 Mezsage DISTRIBUTE_FAPERS
[4 Adaptation
E| < Plan Adaptation

< Goal PapeDistributionGoal
- 4 Plan PaperDistibutionPlan
External Belief Adaptation
< Message DISTRIBUTE_FAPERS
<> Belief PapersList
< Belief ReviewersList
Role Reviewer
e Belief AcceptedPropozalz
-4 Belief RevisionPropozals
-4 Plan PropozalReceptionPlan
<<= Autonomy
-4 Interaction

---¢ Adaptation
<+ Interaction

oy Senzor JADESensor
< Adaptation
<= Autornomy

<4+ Execution Autonormy THREAD _PER_REQUEST

El

&3]
=]

Fig. 4. An Agent Specification using Agent-DSL

3.2 The Aspect-Oriented Agent Framework

The implementation of the generic AO agent architecture (Section 2.2) was realized
using Java and Aspect] [20] programming languages. The basis of the architecture
implementation is an AO framework that contains hot-spots as classes and aspects [8].
Figure 5 presents a partial description of the AO framework. Every class and aspect
presented in the figure is a hot-spot. The ASideML modeling language [4] is used to
represent visually the framework. This language extends UML with notations for
representing aspects.

The notations provide a detailed description of the aspect elements. In this model-
ing language, an aspect is represented by a diamond; it is composed of internal struc-
ture and crosscutting interfaces. The internal structure declares the internal attributes
and methods. At the detailed design level, a crosscutting interface specifies when and
how the aspect affects one or more classes [4]. Each crosscutting interface is com-
posed of inter-type declarations, pointcuts and advices. The first part of a crosscutting
interface represents inter-type declarations, and the second part represents pointcuts

A Generative Approach for Multi-agent System Development 61

and their attached advices. The notation uses a dashed arrow to represent the crosscut
relationship, which relates one aspect to classes and/or aspects.

The Knowledge component (Section 2.2) was refined as a set of classes — Agent,
Belief, Goal and Plan classes. Each of them represents a specific hot-spot that can
be extended to define an agent type. Agent beliefs are defined in our architecture as
domain classes that agent instances can aggregate. Each one of the aspectual compo-
nents (Section 2.2) was refined as a central aspect and a set of auxiliary classes. Fig-
ure 5 only presents the main aspects that refine the agent knowledge classes incorpo-
rating specific agent features.

<< crosscutting interface >>| _— - | << crosscutting interface >>
GoalCreation wé ExecutionAutonomy
goals
activeObject

reactiveAutonomy_() newAgent_()

proactiveAutonomy_() || makeDecision()
initConcurrencyStrategy()
" instantiateReactiveGoal()
<< crosscutting interface >> . . . a
IMessageReception *.. | instantiateProactiveGoal()
) << ing interface >>
inbox IBeliefAdaptation
receiveMsg() Knowledge
g " changedBelief_()
incomingMs:
gltea 0 V% E neWMsg7()\ << ing interface >>
. l<< crosscutting interface >>] =N Plan 1 A IPlanAdaptation
Interaction MessageSending Agent p
sensors outbox name newG_oaI_()
effectors sendMsg() gloae::: adaptBeliefs() planFinal_()
p findPlan()
outgoingMsg_() new()
addBelief()
Legend: setGoal()<------ - .
: tePlan()<-{-
_beforeAdvice G
afterAdvice_

aroundAdvice

Fig. 5. The Aspect-Oriented Agent Framework

The Interaction component is defined as an abstract aspect that introduces interac-
tion capabilities (inbox, outbox, sensors, effectors, parsers) in the Agent class. It also
intercepts domain classes and sensors in the agent environment to enable the message
reception by means of Aspect] pointcuts and advices. Finally, the Interaction
aspect defines two abstract pointcuts and some abstract methods. The abstract point-
cuts are used to define specific points in role aspects and plan classes where internal
messages must be sent. The abstract methods are specialized to create and initialize
specific sensors and effectors. The Interaction subaspects define the concrete
configuration of the Interaction aspect by implementing the abstract pointcuts and
methods. It is possible to specify a different Interaction subaspect for each one of
the agent types or roles defined in an MAS.

The Adaptation component defines the Adaptation abstract aspect, which enables
the Agent class to adapt its beliefs and plans. The belief adaptation of the Adapta-
tion aspect is defined by intercepting the receiveMsg () method of the Agent class
(introduced by the Interaction aspect). After that, specific advices and methods
are responsible for updating beliefs based on external messages received by the agent.
The plan adaptation, defined in the Adaptation aspect, intercepts the setGoal ()

62 Uira Kulesza et al.

method of the Agent class and the erroneous execution of the execute () method of
the Plan subclasses. The purpose is to determine new agent plans to be executed by
the agent to reach a specific goal. The adaptation abstract aspect also offers abstract
methods to be defined by subaspects. These subaspects allow defining specific belief
and plan adaptation for each one of the agent types or roles in MASs.

The Autonomy component defines the Autonomy aspect, which enables the Agent
class to instantiate and manage reactive goals and to execute concurrently several
plans (execution autonomy). However, for sophisticated agent types, the Autonomy
aspect also allows defining proactive and decision autonomy. To instantiate reactive
goals, the Autonomy aspect also intercepts the receiveMsg () method of the Agent
class. This interception is used to verify if specific external events (for instance, an-
other agent’s request) demand the instantiation of reactive goals. The execution
autonomy is implemented in the Autonomy aspect by defining an Active Object [16],
which monitors the Agent class’s list of plans to perform to execute them in separate
threads. The proactive autonomy is implemented by specifying: (i) several pointcuts
in agent knowledge classes that represent specific events of interest, and (ii) an advice
associated with these pointcuts, which is responsible for determining if a proactive
goal must be instantiated in the occurrence of any of these events. Finally, the deci-
sion autonomy only defines a makeDecision () method in the Autonomy aspect that
is invoked in the advices associated with the pointcuts of reactive and proactive goal
instantiation. This method verifies whether it is necessary to execute a decision plan
upon the occurrence of a specific event or upon receipt of a message. Autonomy sub-
aspects can also be implemented to define specialized proactive, reactive and decision
autonomy for each one of the agent types and roles defined in a MAS.

The Collaboration component is implemented by defining role aspects that intro-
duce attributes and methods in an agent type (Agent class or subclass). These ele-
ments respectively define specific beliefs and behaviors of roles. Also, specific Plan
and Goal subclasses must be defined for the roles. The plans defined for a role ma-
nipulate the attributes (beliefs) and invoke methods (behaviors) introduced by the role
aspect. Goal classes specified for a role are instantiated by an Autonomy subaspect
that is specially created for the role. Specific Interaction, Adaptation and
Autonomy subaspects can be defined for an agent role. Section 4 exemplifies the
definition of subaspects for agent roles of a specific case study developed by our re-
search group.

Besides the framework, some components were created to implement specific
functionalities associated with the agenthood features, such as:

e interaction feature: concrete sensors and effectors specially tailored to specific

agent platforms (such as JADE [1]);

e autonomy feature: concrete concurrency strategies (such as “thread pool” and “a
thread per request”) used by the active object [16] to implement the agent’s execu-
tion autonomy.

3.3 The Code Generator

In the configuration knowledge of the generative approach, we implemented a code
generator as an Eclipse plug-in [24]. This generator maps abstractions of Agent-DSL

A Generative Approach for Multi-agent System Development 63

models into the components of the AO agent architecture. The AO framework (Sec-
tion 3.2) supports the implementation of agent architectures. The main task of the
generator is to instantiate the framework for a given multi-agent system. It creates
subclasses and subaspects for specific hot-spots of the framework. Depending on the
Agent-DSL model provided, the code relative to new agent types (or roles) and their
respective agent properties are generated.

The implementation of the code generator was accomplished by using EMF tech-
nology. The EMF representation of the agent architecture was supported by the defi-
nition of an architectural model. This model is responsible for specifying an architec-
ture that will be generated. An architectural model aggregates the components of an
architecture. Each component is composed of classes, aspects and templates. Tem-
plates make it possible to define some class or aspect that needs to be customized,
based on information collected by a DSL. The architectural model was implemented
as an EMF model, similar to the Agent-DSL (Section 3.1).

Figure 6 shows the architectural model of the AO agent framework. It is composed
of the classes and aspects defined in the framework. This architectural model also
contains several templates that are used to express structure and behavior of classes
and aspects that we want to generate. Java Emitter Templates (JET) a generic tem-
plate engine of the EMF, was used to implement and process the templates. Examples
of templates are: (i) concrete instances of hot-spots (classes or aspects), such as spe-
cific agent type classes, specific agenthood subaspects; (ii) specific agent plans and
goals classes; and (iii) specific role aspects. The Agent-DSL collects the information
required in the code generation to customize these templates for each specific agent.
Each code template defines the specific information of the Agent-DSL model to be
used during its customization.

Thus the code generator uses two EMF models to instantiate the AO framework:
an Agent-DSL model and an architectural model. Different agent architectures can be
generated depending on the Agent-DSL and the architectural model informed by the
agent developers. The plug-in of the code generator includes a wizard in the Eclipse
workbench to start the process of code generation. The wizard requests from the user:
(i) a source folder in a Java project to store the classes and aspects generated, (ii) the
Agent-DSL model of the MAS to be generated, and (iii) the architectural model that
describes the AO agent framework. During the generation process, the code generator
traverses the architectural model and it proceeds as follows: (i) for each component
encountered it generates a correspondent Java package; (ii) for each class and aspect
encountered it loads the correspondent element in the Java project; (iii) for each tem-
plate encountered it processes this element using the information collected by the
Agent-DSL model, and it loads the final element generated (class or aspect) in the
specified Java project. Although we have used the architectural model of the AO
agent framework in the definition of our generative approach, a different architectural
model could be used during the generation process. In this case, different classes,
aspects and templates could be included in the architecture model. Also, the custom-
ization of these new templates could be redefined based on information collected by
the Agent-DSL model.

64 Uira Kulesza et al.

|Z§ Fackage Explorer v X

| = 4

E‘E?.‘J expertCommittes
28 s
+ .T:, JRE Spstem Library [JaWa 1.4]
E@r modelz
El-= architecture
@ A0P-MAS-Architecture.genarch
=z domain
i [EvpertCommittes. mas

- ExpertCommittee. mas

= Resource Set
B @
-4 Architecture
B <= Compotient agent
¢ Clazz Agent

[+ < Component agent knowledge
= <= Component agent. agenthood.interaction
----- 4 Class Effectar
----- 4 Clazz FIPATypes
----- 4 Claszz Meszage
----- 4 Clazz ParzerStrategy
----- 4 Clazz Senzor
----- < Azpect Interaction
= 4= Component agent. agenthood. autonomy
----- 4 Class Activelbject
----- 4 Clazz ReactiveGoal
----- 4 Claszz Proactiveloal
----- <= Azpect Autohamy
= 4 Component agent. agenthood. adaptation
----- < Class ProactivePlan
----- 4 Clazz ReactivePlan
----- 4= Azpect Adaptation

Compaonent useragent
- 4 Template Uzerfgent
< Template SpecificE elief
-4 Template SpecificPlan
< Template SpecificGoal
- 4 Template Agentddaptation
- 4 Template Agentiutonomy
-4 Template Agentlnteraction
Component useragent.role
< Template SpecificGoal
-4 Templatz Role
- Template SpecificPlan
- 4 Template SpecificBelief
-4 Template Rolefdaptation

1 |

I

.
.

e

¥

e

&

Package Explorer | Hierarchy

Selection ‘ Parent | List | Tree | Table | TableTres

Fig. 6. The Architectural Model of the AO Agent Framework

4 Using the Generative Approach in a Case Study

We have used the generative approach for the development of the ExpertCommittee
(EC) system, which is a case study undertaken by our research group [9]. EC is an
open system that supports the management of paper submissions and the reviewing
process for a conference. Software agents have been introduced to EC in order to
assist its users with time-consuming activities and automate repetitive user tasks. EC
agents are software assistants that represent paper authors, chairs, PC members and
reviewers and coordinate their activities. The EC system also includes information
agents. JADE [1] is used as the communication platform in this system. As a conse-
quence, the EC system encompasses sensors and effectors for the JADE platform.

A Generative Approach for Multi-agent System Development 65

Figures 7 and 8 show several elements generated for the EC system. Several
classes and aspects are generated based on its Agent-DSL model and on the JET
source templates included in the architecture model of the AO agent framework (sec-
tion 3.3). First, it is generated the ResearchUserAgent class, which represents a
specific agent type. The roles played by instances of this class are also generated. The
figures represent two of them: the Chair and Reviewer aspects. Each role aspect
introduces the role-specific knowledge in the ResearchUserAgent class. Specific
Plan and Goal classes are also generated to the two roles. Figure 7 depicts the spe-
cific agent, roles and plans generated for the EC system. The code templates used to
generate each of these classes and aspects are customized using the specific Agent-
DSL model for the EC system. The ResearcherUserAgent class, for example, is
customized using the agent name and beliefs collected by the Agent-DSL model. On
the other hand, the Chair and Reviewer aspects use the role name and role beliefs.

Plan
execute()
Agent precondiitions()
name
goals .
plans goalList
planList
papersLis_t
reviewerList PaperDistributionPlan ‘
proposalEvalDeadline |
reviewDeadline ReviewerlnvitationPlan ‘
papersWithoutReviewers N
ProposalRespEvaluationPlan
sendReviewProposal() A A el
| receiveProposalResponse() FinalDistributionPlan
ResearcherUserAgent |¢-----------| receiveRetirementRequest()
userName execute()
researchinterests precondiitions()
agenda
Reviewer
sendCurriculumReport()
planList -
Mo acceptedProposals ProposalReceptionPlan
revisionProposals ProposalJudgementPlan
receiveProposal()
judgesProposal () execute(__)'
askReviewerRetirement() precondiitions()
askUserConfirmation()
sendProposalResponse()

Fig. 7. Specific Agent and Roles Generated for the ExpertCommittee MAS

Different Interaction, Adaptation and Autonomy subaspects are generated
for each one of the roles in the EC system. Figure 8 presents these subaspects. For
instance, the ChairInteraction, ChairAdaptation and ChairAutonomy aspects
are produced to agents playing the chair role. ChairInteraction initializes JADE
sensors and effectors to be used by the agents playing the chair role. ChairAdapta-
tion realizes specific belief and plan adaptation of the chair role. Finally, Chair-
Autonomy defines: (i) a reactive autonomy — to instantiate specific goals when receiv-

66 Uira Kulesza et al.

%

inbox
outbox

init()

marshall()
unmarshall() m
[utonomy

decisionGoals
proactiveGoals
Chair Reviewer autonomyDegree
Interaction Interaction

¥ initGenericGoals()
initSpecificGoals()
e P makeDecision()
init() init() makeSpecificDecision()
instantiateGoal()
initThread()
Adaptation
adapters Chair Reviewer
Autonomy Autonomy
adaptBelief()
findPlan() ificGoal ificGoal
adaptSpecificBelief() specificGoals specificGoals
findSpecificPlan()
initSpecificGoals() initSpecificGoals()
makeSpecificDecision() makeSpecificDecision()
m A‘M
Adaptation Adaptation
adaptSpecificBelief() adaptSpecificBelief()
findSpecificPlan() findSpecificPlan()

Fig. 8. Specific Agenthood Subaspects Generated for the ExpertCommitte MAS

ing external messages from reviewer agents; (ii) a proactive autonomy — to instantiate
specific goals when internal events occur; and (iii) an execution autonomy — which
defines a “thread per request” concurrency strategy to execute agent plans.

5 Related Work

Agent-based software engineering has been studied from different perspectives, in-
cluding agent-oriented methodologies and languages for higher-level development
phases [15, 27], and implementation frameworks [1, 18]. Existing agent-oriented
methodologies, such as Gaia [28], provide limited support to deal with concerns that
are internal to software agents. In addition, they usually do not address the code gen-
eration of MASs from high-level specification. Implementation frameworks provide
object-oriented APIs for MAS development, without providing guidelines for the

A Generative Approach for Multi-agent System Development 67

modularization of agent concerns. Besides these frameworks do not deal with the
modeling and implementation of agent crosscutting concerns typically encountered in
MASs [9, 11-14].

Cossentino et al [6] have proposed PASSI (Process for Agent Societies Specifica-
tion and Implementation), a methodology to specify, design and implement MASs.
This methodology proposes the organization of the MAS development process in
different phases from the requirements specification through to system deployment.
Each phase focuses on the definition or refinement of a system model. Many PASSI
models are adaptations of UML standard models, such as use-case, class and activity
diagrams, which incorporate agent-oriented abstractions. The use of class diagrams in
the design of MASs brings the facility to generate the skeletons of many classes of the
system. The authors have also explored the reuse of recurring agent design patterns to
improve the quantity and quality of code generated. However, the PASSI approach
does not support the systematic modularization and generation of code relative to
crosscutting agent concerns.

Pace et al [22] have developed the Smartweaver approach. Their approach provides
assistance for the development of MAS applications by means of integration of agent-
oriented and aspect-oriented frameworks. The authors demonstrate the application of
their approach which consists of two components: (i) Bubble [22] — an agent-oriented
framework used to the implementation of reactive agents; and (ii) Aspect-Moderator
[5] — an AO framework that supports the coordination between functional components
and aspects. Aspect-Moderator is used to capture typical crosscutting concerns, such
as concurrency, logging, and event handling. The Smartweaver approach systemati-
cally addresses the incorporation of aspects in agent models. However, the code gen-
eration is limited and it does not support essential agent concerns, including auton-
omy, interaction, and adaptation.

6 Conclusions and Ongoing Work

We have presented a generative approach for the development of MASs. The main
purpose of our approach is to explore the domain of MASs to enable the code genera-
tion of agent architectures. The generative approach makes it possible to deal with
orthogonal (non-crosscutting) and crosscutting agent features since early development
phases in a uniform way.

Compared with existing MASs development approaches [1, 15, 18, 27], our work
brings important benefits. The generative approach is flexible in the sense that it al-
lows the problem and solution spaces to evolve independently. In problem space, new
DSLs can be created to address different agent features or current DSLs can be
adapted to address a better understanding of a specific agent feature or to add speci-
ficities of an MAS. Moreover, the generative approach is also very practical. It de-
fines clearly the mapping between high-level features and implementation compo-
nents (classes, aspects) of agent architectures in the code generator. It also offers a
clear separation of orthogonal and crosscutting agent features in problem and solution
spaces.

The use of aspect-oriented technologies in the agent architecture also brings valu-
able advantages to our approach. The implementation of the code generator was sim-

68 Uira Kulesza et al.

plified because crosscutting agent features in the Agent-DSL are directly mapped to
aspect-oriented abstractions. Using only object-oriented abstractions, crosscutting
agent features need to be composed in the code of classes by the code generator. It
makes the generator more complex and difficult to be implemented.

The work presented in this paper represents the current status of the generative ap-
proach. Different studies are being developed to improve our capacity to generate
MAS architectures. In the problem space, we are extending the Agent-DSL to allow
for the modeling of other relevant MASs concerns, such as, agent coordination, learn-
ing and mobility. In the solution space, an ongoing research project is the definition of
an architectural definition language (ADL) that supports the definition of modular and
aspectual components. This ADL will be used to formalize aspect-oriented architec-
tures. We claim to enable the specification of AO architectures at a high-level inde-
pendent of technologies, similar to MDA [21].

Regarding the configuration knowledge (code generators) of the generative ap-
proach, we intend to offer flexible ways to specify the transformations of: (i) elements
in the Agent-DSL to elements (components, aspects and interfaces) of the ADL; and
(ii) elements of the ADL to concrete technologies (for instance, Java and Aspect]).
Finally, we plan to develop new and more complex case studies in order to better
evaluate the usability and usefulness of our generative approach.

Acknowledgements

This work has been partially supported by CNPq under grant No. 140252/2003-7 for
Uird, grants No. 141457/2000-7 and No. 381724/2004-2 for Alessandro, and by
FAPERIJ under grant No. E-26/150.699/2002 for Alessandro. The authors are also
supported by the PRONEX Project under grant 7697102900, and by ESSMA under
grant 552068/2002-0 and by the art. 1 of Decree number 3.800, of 04.20.2001. This
research has also been partially supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

References

1. F. Bellifemine, A. Poggi, G. Rimassi. “JADE: A FIPA-Compliant Agent Framework.”
Proc. Practical Applications of Intelligent Agents and Multi-Agents, pp. 97-108, April
1999.

2. G. Booch, I. Jacobson, J. Rumbaugh. “Unified Modeling Language - User's ad Guide”.
Addison-Wesley,1999.

3. F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, T. Grose. “Eclipse Modeling Frame-
work”. Addison-Wesley, 2003.

4. C. Chavez. “A Model-Driven Approach to Aspect-Oriented Design”. PhD Thesis, PUC-
Rio, April 2004.

5. C. Constantinides, A. Bader, T. Elrad, M. Fayad. “Designing an Aspect-Oriented Frame-
work”. Computing Surveys, 32:41, 2000.

6. M. Cossentino, M. Potts. “A CASE tool supported methodology for the design of multi-
agent systems.” In Proc. of the 2002 International Conference on Software Engineering Re-
search and Practice (SERP'02), Las Vegas, USA, June 2002.

7. K. Czarnecki, U. Eisenecker. Generative Programming: Methods, Tools, and Applications,
Addison-Wesley, 2000.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

A Generative Approach for Multi-agent System Development 69

. M. Fayad, D. Schmidt, R. Johnson. “Building Application Frameworks: Object-Oriented

Foundations of Framework Design”. John Wiley & Sons, September 1999.

. A. Garcia. “From Objects to Agents: An Aspect-Oriented Approach.” PhD Thesis, PUC-

Rio, April 2004.

A. Garcia, C. Lucena. “Software Engineering for Large-Scale Multi-Agent Systems”. ACM
Software Engineering Notes, August 2002.

A. Garcia, et al. “Engineering Multi-Agent Systems with Aspects and Patterns.” Journal of
the Brazilian Computer Society, September 2002.

A. Garcia et al. “Separation of Concerns in Multi-Agent Systems: An Empirical Study.” In:
C. Lucena et al (Eds), “Advances in Software Engineering for Multi-Agent Systems.”
Springer-Verlag, LNCS 2940.

A. Garcia, U. Kulesza, C. Lucena. “Separation of Concerns in Open Multi-Agent Systems:
An Architectural Approach.” Proceedings of the SELMAS’04, Edinburgh, May 2004.

A. Garcia, C. Lucena, D. Cowan. “Agents in Object-Oriented Software Engineering.”
Software: Practice and Experience, May 2004, pp. 1-33.

C. Iglesias, et al. “A Survey of Agent-Oriented Methodologies.” Proceedings of the ATAL-
98, Paris, France, July 1998, pp. 317-330.

R. Lavender, D. Schmidt. “Active Object: an Object Behavioral Pattern for Concurrent
Programming.” In: Pattern Languages of Program Design, Addison-Wesley, 1996.

K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson. “Feature-Oriented Domain Analysis
(FODA) Feasibility Study.” Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, 1990.

E. Kendall, et al. “A Framework for Agent Systems.” Implementing Application Frame-
works — Object-Oriented Frameworks at Work, M. Fayad et al. (eds.). John Wiley & Sons:
1999.

G. Kiczales, et al. “Aspect-Oriented Programming.” Proc. Of ECOOP’97, LNCS 1241,
Springer-Verlag, Finland, June 1997.

G. Kiczales, et al. “Getting Started with Aspect].” Communication of the ACM. October
2001.

J. Miller, and J. Mukerfi, MDA Guide Version 1.0, Object Management Group, Document
Number: omg/2003-05-01, May, 2003.

A. D. Pace, F. Trilnik, M. Campo. “Assisting the Development of Aspect-Based Multi-
Agent Systems Using the Smartweaver Approach.” In: "Software Engineering for Large-
Scale Multi-Agent Systems.” Springer, LNCS 2603, March 2003, pp. 165-181.

R. Prieto-Diaz, G. Arango. Domain Analysis and Software Systems Modeling. IEEE Com-
puter Society Press, 1991.

S. Shavor, J. D’Anjou, S. Fairbrother, et all. The Java Developer’s Guide to Eclipse.
Addison-Wesley, 2003.

V. Silva, et al. “Taming Agents and Objects in Software Engineering.” In: "Software Engi-
neering for Large-Scale Multi-Agent Systems.” Springer, LNCS 2603, March 2003, , pp. 1-
26.

P. Tarr, et al. “N Degrees of Separation: Multi-Dimensional Separation of Concerns.” Pro-
ceedings of the 21st International Conference on Software Engineering, May 1999.

M. Wooldridge, P. Ciancarini (Eds.). “Agent-Oriented Software Engineering: The State of
the Art.” In: Agent-Oriented Software Engineering, Springer, LNAI, 2001.

M. Wooldridge, N. Jennings, D. Kinny. The Gaia Methodology for Agent-Oriented Analy-
sis and Design. Journal of Autonomous Agents and MASs, Vol. 3, 2000, pp. 285-312.

A Social-Driven Design of e-Business System

Manuel Kolp, T. Tung Do, and Stéphane Faulkner

IAG - ISYS Information Systems Research Unit, University of Louvain,
1, Place des Doyens, Louvain-la-Neuve, Belgium
{kolp,do, faulkner}@isys.ucl.ac.be

Abstract. In the last few years, software applications have increased in com-
plexity and in stakeholder's expectations principally due to new Internet-centric
application areas such as e-business, web services, ubiquitous computing, and
peer-to-peer networks. Multi-agent systems (MAS) architectures have gained
popularity for developing such software. Unfortunately, despite considerable
work in software architecture during the last decade, few research efforts have
aimed at truly defining frameworks for agent-based architectural design. Con-
sidering that a MAS architecture is conceived as a society of software agents,
this paper overviews SKwyRL, a social-driven design framework dedicated to
build up agent-based systems. The framework proposes a modern approach
based on organizational structures and social patterns to define agent architec-
tures notably in the context of e-business system design.

1 Introduction

The meteoric rise of Internet and World-Wide-Web technologies has created over-
night new application areas for enterprise software, such as e-business applications.
These areas demand software that is robust, can operate within a wide range of envi-
ronments, and can evolve over time to cope with changing requirements. Moreover,
such software has to be highly customizable to meet the needs of a wide range of
users and sufficiently secure to protect personal data and other assets on behalf of its
stakeholders.

Not surprisingly, researchers are looking for new software paradigms that cope
with such requirements. One promising source of ideas for designing such software is
the area of multi-agent systems (MAS) architectures. They appear to be more flexi-
ble, modular, and robust than traditional including object-oriented ones. They tend to
be open and dynamic in the sense they exist in a changing organizational and opera-
tional environment where new components can be added, modified or removed at any
time. Research in this area has notably emphasized that a MAS is conceived as a
society of autonomous, collaborative, and goal-driven software components (agents),
much like social organizations.

Such architectures become rapidly complicated due to the ever-increasing com-
plexity of these new business domains and their human or organizational actors. As
the expectations of the stakeholders change day after day, as the complexity of the
systems, communication technologies and organizations continually increases in
today's dynamic environments, developers are expected to produce architectures that
must handle more difficult and intricate requirements that were not taken into account

R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 70-84, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Social-Driven Design of e-Business System 71

ten years ago, making thus architectural design a central engineering issue in modern
enterprise information system life-cycle [1].

An important technique that helps to manage this complexity when constructing
and documenting such architectures is the reuse of development experience and
know-how. Thus, styles and patterns have become an attractive approach to reusing
architectural design knowledge. Architectural styles are intellectually manageable
abstractions of system structure that describe how system components interact and
work together [2]. Design patterns describe a problem commonly found in software
designs and prescribe a flexible solution for the problem, so as to ease the reuse of
that solution. This solution is repeatedly applied from one design to another, produc-
ing design structures that look quite similar across different applications [3].

Taking real-world social structures as metaphors, we propose a set of generic ar-

chitectural structures [4, 5] in the context of the SKwyRL! framework [6, 15], whose

aim is to construct and validate a software design process for agent-based e-business

systems:

— At the architectural design level, organizational styles inspired from organization
theory and strategic alliances will be used to design the overall MAS architecture.
Styles from organization theory will describe the internal structure and design of
the MAS architecture, while styles from strategic alliances will model the coop-
eration of independent architectural organizational entities that pursue shared
goals.

— At the detailed design level, social design patterns drawn from research on coop-
erative and distributed architectures, will offer a more microscopic view of the so-
cial MAS architecture description. They will define the agents and the social de-
pendencies that are necessary for the achievement of agent goals.

The paper is organized as follows. Section 2 overviews architectural organizational
styles, details one of them, the structure-in-5, and applies it to design the architecture
of an e-business application. Section 3 presents the social design patterns, details one
of them, the broker, and applies them to design in details part of the e-business appli-
cation. Section 4 overviews the agent oriented e-business system implementation.
Finally, Section 5 concludes the paper.

2 Organizational Styles

Software architectures describe a software system at a macroscopic level in terms of a
manageable number of subsystems, components and modules inter-related through
data and control dependencies [7].

System architectural design has been the focus of considerable research during the
last fifteen years that has produced well-established architectural styles and frame-
works for evaluating their effectiveness with respect to particular software qualities.
Examples of styles are pipes-and-filters, event-based, layered, control loops and the
like [2]. Examples of software qualities include maintainability, modifiability, porta-
bility etc [1]. We are interested in developing a suitable set of architectural styles for

I SKwyRL: Social arChitectures for Agent Software Systems EngineeRing
(http://www.isys.ucl.ac.be/skwyrl)

72 Manuel Kolp, T. Tung Do, and Stéphane Faulkner

multi-agent software systems. Since the fundamental concepts of a Multi-Agent Sys-
tem (MAS) are intentional and social, rather than implementation-oriented, we turn to
theories which study social structures for motivation and insights. But, what kind of
social theory should we turn to? There are theories that study group psychology,
communities (virtual or otherwise) and social networks. Such theories study social
structure as an emergent property of a social context. Instead, we are interested in
social structures that result from a design process. For this, we turn for guidance, in
SKwyRL, to organizational theories, namely Organization Theory and Strategic Alli-
ances. Organizational Theory (e.g., [8, 9]) describe the internal structure and design
of an organization, while Strategic Alliances (e.g., [10, 11, 12, 13]) model the strate-
gic cooperation of independent organizational stakeholders who pursue a set of
shared goals.

2.1 Organizational Theory

“An organization is a consciously coordinated social entity, with a relatively identifi-
able boundary, that functions on a relatively continuous basis to achieve a common
goal or a set of goals" [9]. Organization theory is the discipline that studies both
structure and design in such social entities. Structure deals with the descriptive as-
pects while design refers to the prescriptive aspects of a social entity. Organization
theory describes how practical organizations are actually structured, offers sugges-
tions on how new ones can be constructed, and how old ones can change to improve
effectiveness. To this end, schools of organization theory have proposed models pat-
terns to try to find and formalize recurring organizational structures and behaviors.

In the following, we briefly present organizational styles identified in Organization
Theory. The structure-in-5 will be studied in detail in Section 2.3.

The Structure-in-5 style. An organization can be considered an aggregate of five
sub-structures, as proposed by Minztberg [8]. At the base level sits the Operational
Core which carries out the basic tasks and procedures directly linked to the produc-
tion of products and services (acquisition of inputs, transformation of inputs into
outputs, distribution of outputs). At the top lies the Strategic Apex which makes ex-
ecutive decisions ensuring that the organization fulfils its mission in an effective way
and defines the overall strategy of the organization in its environment. The Middle
Line establishes a hierarchy of authority between the Strategic Apex and the Opera-
tional Core. It consists of managers responsible for supervising and coordinating the
activities of the Operational Core. The Technostructure and the Support are separated
from the main line of authority and influence the operating core only indirectly. The
Technostructure serves the organization by making the work of others more effective,
typically by standardizing work processes, outputs, and skills. It is also in charge of
applying analytical procedures to adapt the organization to its operational environ-
ment. The Support provides specialized services, at various levels of the hierarchy,
outside the basic operating workflow (e.g., legal counsel, R&D, payroll, cafeteria).

The pyramid style is the well-know hierarchical authority structure. Actors at
lower levels depend on those at higher levels. The crucial mechanism is the direct
supervision from the Strategic Apex. Managers and supervisors at intermediate levels
only route strategic decisions and authority from the Strategic Apex to the operating

A Social-Driven Design of e-Business System 73

(low) level. They can coordinate behaviors or take decisions by their own, but only at
a local level.

The chain of values merges, backward or forward, several actors engaged in
achieving or realizing related goals or tasks at different stages of a supply or produc-
tion process. Participants, who act as intermediaries, add value at each step of the
chain. For instance, for the domain of goods distribution, providers are expected to
supply quality products, wholesalers are responsible for ensuring their massive expo-
sure, while retailers take care of the direct delivery to the consumers.

The matrix style proposes a multiple command structure: vertical and horizontal
channels of information and authority operate simultaneously. The principle of unity
of command is set aside, and competing bases of authority are allowed to jointly
govern the workflow. The vertical lines are typically those of functional departments
that operate as "home bases" for all participants, the horizontal lines represents pro-
ject groups or geographical arenas where managers combine and coordinate the ser-
vices of the functional specialists around particular projects or areas.

The auction style involves competitively mechanisms, and actors behave as if
they were taking part in an auction. An auctioneer actor runs the show, advertises the
auction issued by the auction issuer, receives bids from bidder actors and ensures
communication and feedback with the auction issuer who is responsible for issuing
the bidding.

2.2 Strategic Alliances

A strategic alliance links specific facets of two or more organizations. At its core, this
structure is a trading partnership that enhances the effectiveness of the competitive
strategies of the participant organizations by providing for the mutually beneficial
trade of technologies, skills, or products based upon them. An alliance can take a
variety of forms, ranging from arm's-length contracts to joint ventures, from multina-
tional corporations to university spin-offs, from franchises to equity arrangements.
Varied interpretations of the term exist, but a strategic alliance can be defined as
possessing simultaneously the following three necessary and sufficient characteris-
tics:

— The two or more organizations that unite to pursue a set of agreed upon goals re-
main independent subsequent to the formation of the alliance;

— The partner organizations share the benefits of the alliances and control over the
performance of assigned tasks;

— The partner organizations contribute on a continuing basis in one or more key
strategic areas, e.g., technology, products, and so forth.

In the following, we briefly present organizational styles identified in Strategic Al-
liances.

The joint venture style involves agreement between two or more intra-industry
partners to obtain the benefits of larger scale, partial investment and lower mainte-
nance costs. A specific joint management actor coordinates tasks and manages the
sharing of resources between partner actors. Each partner can manage and control
itself on a local dimension and interact directly with other partners to exchange re-
sources, such as data and knowledge. However, the strategic operation and coordina-

74 Manuel Kolp, T. Tung Do, and Stéphane Faulkner

tion of such an organization, and its actors on a global dimension, are only ensured by
the joint management actor in which the original actors possess equity participations.

The arm's-length style implies agreements between independent and competitive,
but partner actors. Partners keep their autonomy and independence but act and put
their resources and knowledge together to accomplish precise common goals. No
authority is lost, or delegated from one collaborator to another.

The hierarchical contracting style identifies coordinating mechanisms that com-
bine arm's-length agreement features with aspects of pyramidal authority. Coordina-
tion mechanisms developed for arm's-length (independent) characteristics involve a
variety of negotiators, mediators and observers at different levels handling condi-
tional clauses to monitor and manage possible contingencies, negotiate and resolve
conflicts and finally deliberate and take decisions. Hierarchical relationships, from the
executive apex to the arm's-length contractors restrict autonomy and underlie a coop-
erative venture between the parties.

The co-optation style involves the incorporation of representatives of external
systems into the decision-making or advisory structure and behavior of an initiating
organization. By co-opting representatives of external systems, organizations are, in
effect, trading confidentiality and authority for resource, knowledge assets and sup-
port. The initiating system has to come to terms with the contractors for what is being
done on its behalf; and each co-optated actor has to reconcile and adjust its own
views with the policy of the system it has to communicate.

2.3 An Organizational Style in Detail

Figure 1 details the structure-in-5 style using the i* model [14]. i* is a graph, where
each node represents an actor (or software agent in this context) and each link be-
tween two actors indicates that one actor depends on the other for some goal to be
attained. A dependency describes an ‘“agreement” (called dependum) between two
actors: the depender and the dependee. The depender is the depending actor, and the
dependee, the actor who is depended upon. The type of the dependency describes the
nature of the agreement. Goal dependencies represent delegation of responsibility for
fulfilling a goal; softgoal dependencies are similar to goal dependencies, but their
fulfilment cannot be defined precisely; task dependencies are used in situations where
the dependee is required.

Actors are represented as circles; dependums — goals, softgoals, tasks and re-
sources — are respectively represented as ovals, clouds, hexagons and rectangles;
dependencies have the form depender — dependum — dependee.

For instance in Figure 1, the Technostructure, Middle Line and Support actors de-
pend on the StrategicApex for strategic management. Since the goal Strategic Man-
agement does not have a precise description, it is represented as a softgoal (cloudy
shape). The Middle Line depends on the Technostructure and Support respectively
through goal dependencies Control and Logistics represented as oval-shaped icons.
The Operational Core is related to the Technostructure and Support actors through
the Standardisation task dependency and the Non-operational Service resource de-
pendency, respectively.

A Social-Driven Design of e-Business System 75

Strategic
Apex

Behavior Policy
it Management
Operational
Management

Strategic

Techno
structure

Operate Standar
Coordination disation

Non-operational
Service

Procedure
Information

Operational

Core

Fig. 1. The Structure-in-5 Style

A number of constraints can also be applied to supplement the basic style:

— The dependencies between the Strategic Apex as depender and the Technostruc-
ture, Middle Line and Support as dependees must be of type goal;

— A softgoal dependency models the strategic dependence of the Technostructure,
Middle Line and Support on the Strategic Apex;

— The relationships between the Middle Line and Technostructure and Support must
be of goal dependencies;

— The Operational Core relies on the Technostructure and Support through task and
resource dependencies;

— Only task dependencies are allowed between the Middle Line (as depender or de-
pendee) and the Operational Core (as dependee or depender).

2.4 Applying Organizational Styles

This section illustrates how we have applied the structure-in-5 style to design the
architecture of a typical E-Business application, called E-Media. It is a typical busi-
ness-to-consumer application supporting the creation of information sources that
facilitate the on-line transaction of products, services, and payments resulting in an
effective and efficient interaction among sellers, buyers and intermediaries.

76 Manuel Kolp, T. Tung Do, and Stéphane Faulkner

E-Media includes the following main features:

— An on-line web interface allows customers to examine the items in the E-Media
catalogue, and place orders;

— Customers can search the on-line store by either browsing the catalogue or query-
ing the item database. An online search engine allows customers to search title,
author/artist and description fields trough keywords or full-text search;

— Internet communications are supported;

— On-line financial transactions including credit card and anonymity are protected;

— All web information (e.g., product and customer turnover, sales average, ...) of
strategic importance is recorded for monthly or on-demand statistical analysis;

— Based of this statistical and strategic information, the system permanently man-
ages and adapts the stock, pricing and promotions policy. For example, for each
product, the system can decide to increase or decrease stocks or profit margins. It
can also adapt the customer on-line interface with new product promotions.

To guide designers in selecting among architectural alternatives, we apply the NFR
Framework [17] which offers explicit representation and analysis of non-functional
requirements. We identify particular NFRs that can be addressed to characterize MAS
architectures; then evaluate the degree to which a given NFR is satisfied by an orga-
nizational style; finally select among organizational style alternatives using the propa-
gation algorithms presented in [18].

Figure 2 models the E-Media agent-oriented architecture following the structure-
in-5 style.

The Store Front plays the role of the structure-in-5’s Operational Core. It interacts
with customers and provides them with a usable front-end web application for con-
sulting, searching and shopping media items.

The Back Store constitutes the structure- in-5’s Support component. It manages the
product database and communicates to the Store Front relevant product information.
It stores and backs up all web information about customers, products and sales to be
able to produce statistical information (e.g., analyses, average charts and turnover
reports). Such kind of information is computed either for a predefined product (when
the Coordinator asks it) or on a monthly basis for every product. Based on this
monthly statistical information, it provides also the Decision Maker with strategic
information (e.g., sales increase or decrease, performance charts, best sales, sales
prevision, ...).

The Billing Processor plays the role of the structure-in-5’s Technostructure in han-
dling customer orders and bills. To this end, it provides the customer with on-line
shopping cart capabilities. It also ensures the secure management of financial transac-
tions for the Decision Maker. Finally, it handles, under the responsibility of the Coor-
dinator component, stock orders to avoid shortages or congestions.

As the structure-in-5’s Middle Agency, the Coordinator assumes the central posi-
tion of the architecture. It is responsible to implements strategic decisions for the
Decision Maker (Strategic Apex). It supervises and coordinates the activities of the
Billing Processor (initiating the stock and pricing policy), the Front Store (adapting
the front end interface with new promotions and recommendations) and the Back
Store.

A Social-Driven Design of e-Business System 77

Decision
Maker

Financial Adaptability
Transaction Management

Security Strategic
Management Information

Back Store

Billing
Processor

Orders &
Billing

. Manage
Coordlnqte Catalogue
E-Shopping Browsing

7

Update &
Back-up
Information

Product
Information

Fig. 2. The E-Media Architecture following the Structure-in-5 Style

3 Social Patterns

The organizational abstraction sketched in the previous sections gives information
about the system architecture to be: every time an organizational style is applied, it
allows to easily pointing up, to the designer, the required organizational agents.

Next step in MAS architectural design requires detailing and relating identified
(organizational) agents to more specific ones in order to proceed with the agent be-
havior characterization. Namely, each agent in Figure 2 is much closer to the real
world system actor behavior than software agent behavior that we consequently aim
to achieve. Consequently, once the organizational architectural reflection has figured
out the MAS global structure in terms of actors and their intentional relationships, a
deepener analysis is required to detail the agent behaviors and their interdependencies
necessary to accomplish their roles in the software organization.

To effectively deal with such a purpose, design patterns are used to describe a
problem commonly found in software designs and prescribe a flexible solution for the
problem, so as to ease the reuse of that solution. In SkwyRL, we adopt social patterns
[15] that are design patterns focusing on social and intentional aspects that are recur-
rent in multi-agent or cooperative systems. Similarly to organizational styles, social
patterns are generic structures that define how (a small number of) agents are interact-
ing together in order to fulfill their obligations.

78 Manuel Kolp, T. Tung Do, and Stéphane Faulkner

SKwyRL classifies social patterns in two categories. The Pair patterns describe di-
rect interactions between negotiating agents. The Mediation patterns feature interme-
diate agents that help other agents reach agreement about an exchange of services.
These patterns are then applied to design in detail the E-Media application.

3.1 Pair Patterns

The Booking pattern involves a client and a number of service providers. The client
issues a request to book some resource from a service provider. The provider can
accept the request, deny it, or propose to place the client on a waiting list, until the
requested resource becomes available when some other client cancels a reservation.

The Subscription pattern involves a yellow-page agent and a number of service
providers. The providers advertise their services by subscribing to the yellow pages.
A provider that no longer wishes to be advertised can request to be unsubscribed.

The Call-For-Proposals pattern involves a client and a number of service provid-
ers. The client issues a call for proposals for a service to all service providers and then
accepts proposals that offer the service for a specified cost. The client selects one
service provider to supply the service.

The Bidding pattern involves a client and a number of service providers. The cli-
ent organizes and leads the bidding process, and receives proposals. At every itera-
tion, the client publishes the current bid; it can accept an offer, raise the bid, or cancel
the process.

3.2 Mediation Patterns

In the Monitor pattern, subscribers register for receiving, from a monitor agent, noti-
fications of changes of state in some subjects of their interest. The monitor accepts
subscriptions, requests information from the subjects of interest, and alerts subscrib-
ers accordingly.

In the Broker pattern, the broker agent is an arbiter and intermediary that requests
services from providers to satisfy the request of clients.

In the Matchmaker pattern, a matchmaker agent locates a provider for a given
service requested by a client, and then lets the client interact directly with the pro-
vider, unlike brokers, who handle all interactions between clients and providers.

In the Mediator pattern, a mediator agent coordinates the cooperation of per-
former agents to satisfy the request of a client agent. While a matchmaker simply
matches providers with clients, a mediator encapsulates interactions and maintains
models of the capabilities of initiators and performers over time.

The Wrapper pattern incorporates a legacy system into a multi-agent system. A
wrapper agent interfaces system agents with the legacy system (source) by acting as a
translator. This ensures that communication protocols are respected and the legacy
system remains decoupled from the rest of the agent system.

A Social-Driven Design of e-Business System 79

_ -~

subscribe

service

request
service
forward
service

-~ Do

I Service
Provider
propose
service

Broker

accept service
proposed

provide
% service L

Fig. 3. The Broker Pattern in i*

3.3 A Social Pattern in Detail

Figure 3 details the Broker social pattern in i *.

It is considered as a combination of (1) a Subscription pattern (shown enclosed
within dashed boundary (a)), that allows service providers to subscribe their services
to the Broker agent and where the Broker agent plays the role of yellow-page agent,
(2) one of the other pair patterns - Booking, Call-for-Proposals, or Bidding - whereby
the Broker agent requests and receives services from service providers (in Figure 3, it
is a Call-for-Proposals pattern, shown enclosed within dotted boundary (b)), and (3)
interaction between broker and the client: the Broker agent depends on the client for
sending a service request and the client depends on the Broker agent to forward the
service.

Figure 4 shows a sequence diagram for the Broker pattern. The client (cus -
tomerl) sends a service request (ServiceRequestSent) containing the charac-
teristics of the service it wishes to obtain from the broker. The broker may alterna-
tively answer with a denial (BRRefusalSent) or a acceptance (BRAcceptance-
Sent).

In the case of an acceptance, the broker sends a call for proposal to the registered
service providers (CallForProposalSent). The call for proposal (CFP) pattern
is then applied to model the interaction between the broker and the service providers.
The service provider either fails or achieves the requested service. The broker then
informs the client about this result by sending a InformFailureServiceRe-
guestSent ora ServiceForwarded, respectively.

The communication dimension of the subscription pattern (SB) is given at the top-
right and the communication dimension of the call-for- proposals pattern (CFP) is
given at the bottom-right part of Figure 4. The communication specific for the broker
pattern is given in the left part of the figure.

80 Manuel Kolp, T. Tung Do, and Stéphane Faulkner

Customerl/ bk1/ spl/
Client:BR Broker:BR ServiceProvider:BR

' Subscribe/ Unsubscribe '

3 AcceptedSubscriptionSent D sB
| j RefusedSubscriptionSent u pattern
i ; []
ServiceRequestSent ' '
BRRefusalSent i
i CallForProposalSent :
| BRAcceptanceSent \ ‘
! RefusalSent
[
} ProposalSent
RejectedProposalSent CFP
' | pattern
AcceptedProposalSent |
FailureServiceSent
InformFailure
ServiceRequestSent
] InformDoneServiceSent

ServiceForwarded

Fig. 4. Interaction Diagram for the Broker Pattern

Provide
ltem
Data

Handle
Cancelation
Request

Notify
Update

Advertise
Source
Location

Translate
Response

Product
Database

Provide
Information

Ask for
Info
Advertising

Route Info
Request

Source
Matchm.

Fig. 5. Decomposing the Store Front with Social Patterns

3.4 Applying Social Patterns

Figure 5 shows a possible use of the patterns for the Store Front component of the
e-business system of Figure 2. In particular, it shows how to realize the dependencies
Manage catalogue browsing, Update Information and Product Information from the
point of view of the Store Front. The Store Front and the dependencies are decom-
posed into a combination of social patterns [5] involving agents, pattern agents, sub-
goals and subtasks.

The booking pattern is applied between the Shopping Cart and the Information
Broker to reserve available items. The broker pattern is applied to the Information

BB Whelowne on E-Media

Il prndices - |

Best Sellers

3. sterers -Cpiseds | The
Jrsny y—

A o Ec

A Social-Driven Design of e-Business System

My Emadia

LT N your gain: 539 €

Best Deals !! E il 2acrzss
5 T
I RS
Minority Report (#Widezereen Edition)
S owrs e 3296 <20 %
you pay 1 your gain: 4,43 £
Want rrors advantagas...
ET. -~ o
- Register NOW 111
dommia ice: LK =20 -
1 Register = |

American Beauty

4

s

My Shopping cart
L e N o Socpirg cart

Hornal pnee - 1c224 - 30 S
4 o oy GO 110 ¢ your gain: 288 € 4
SplderMan
Bk Hawk Dowr
5. Anms aitac 21726 -20 %
Juu g AT E in:
Juu your gain: 4,34 € [Purchase

Fig. 6. E-Media Main Interface

Broker, which satisfies the Shopping Cart's requests of information by accessing the
Product Database. The Source Matchmaker applies the matchmaker pattern to locate
the appropriate source for the Information Broker, and the monitor pattern is used to
check any possible change in the Product Database. Finally, the mediator pattern is
applied to dispatch the interactions between the Information Broker, the Source
Matchmaker, and the Wrapper, while the wrapper pattern makes the interaction be-
tween the Information Broker and the Product Database.

4 Implementation Overview

We briefly describe in this section the e-business system itself by focusing on the role
of the agents and how they interact. The implementation has been derived from the
architectural design explained previously. It has been realized on the JACK agent-
oriented development environment [16]

When a user gets connected to E-Media, the Front-Store is instantiated and dis-
plays the interface depicted on figure 6. It allows the new coming user to register on
the web-site (1). The information provided by the users is handled by the Back-Store
which checks the validity (2). Once this has been done, the users can perform pur-
chases on E-Media by adding product to the shopping cart (4). The shopping cart is
managed by the Billing-Processor. At any moment during the session the user can use
the navigation-bar (3) to switch from one to another section. Promotions (5) and the
top 5 best sales (6) are part of the strategic behaviour. The promotion policies are
initiated by the Decision-Maker from the strategic information provided by the Back-
Store. The Coordinator chooses the best promotions and adapts the promotion inter-
face. The coordinator acts in the same way with the best sales, the Back-Store com-

82 Manuel Kolp, T. Tung Do, and Stéphane Faulkner

B vatnnme nn § -easia

3 -MEDRIA.COM

HOME | _MUSIC [BOOKS | SOFTWARES|

Welcame Cymdly, fah ier

Al proects |-

Search for a dvd... 1 -

it]
E {‘é‘\ n by ile | EE— Q | o pasa

arzh o acors

Szarch by raaisamon

(Bioch Aawn Do
X

T : Star Wars - Episace |, [
Taz Lo afthe Ringz - Tae T
Fellmvzhi ol e kg el | L Ameriean Beauty
duthars ; Sardcr-An

S, ::r;;ﬁomﬂ and The Chamber ot Secrets

| megtster ==

g
. THo Lard Of h Ritgs - 111 Felowship of th Rity (W iissel e Edftien)
Dascriptian = The Lord af the Rings - The Fellanahip of the Ring (Piatinam Series Extonded B¢
A Fe Tumptiar L s ol s inority Repart (Widescreen Edean)

7

3

B

=

22
o

Lo >

Additienal Infermatiens ;
Rikrs, Elsh Wocd, lan Wedsten

Fig. 7. E-Media Main Interface, DVD Section

putes the five best sellers and the coordinator is in charge of updating the Front-Store
interface.

Figure 7 describes the Store-Front interface when the “DVD” button of the naviga-
tion-bar is actived. To start a search the users must fill one or several fields from the
search engine (1). The Front-Store sends the query parameters to the Back Store
which provides the results to the Front-Store (2). At any moment during the session,
if the user clicks on a product (best seller, query result, shopping cart...) a request is
sent to Back-Store to provide more information on this product (3).

When the user starts the billing process, the Billing-Processor displays all the items
of the shopping cart and computes the total and sub-total for each product. Next, it
checks the validity of the user Id-Card number. Once the payment is accepted the
Billing-Processor informs the Store-Front. A confirmation message is displayed and
the shopping cart is cleared.

The E-Media administrator has also the possibility of consulting information com-
puted by the various agents. For instance Figure 8 gives indications on the Billing-
Processor. The administrator can either displays the current stock for each product or
the orders that have been sent for a certain period.

Particularly for the broker pattern implementation, Figure 9 shows the remote ad-
ministration tool for the information broker described in Figure 5. The customer
sends a service request to the broker asking for buying or selling DVDs. He chooses
which DVDs to sell or buy, selects the corresponding DVD titles, the quantity and the
deadline (the time-out before which the broker has to realize the requested service).
When receiving the customer's request, the broker interacts with the media shops. The
interactions between the broker and the media shops are shown in the bottom-right
corner of the figure.

A Social-Driven Design of e-Business System 83

(B g Pracunsae e Statisie -] =121
Sl infmncatinie fu ;. s = Shurm infuimutiuies fan 2| snl ool Tlarme iz dep
Dizplay == Dizplay ==
Ll 0 <luf il 1wt pud sz e sl e 1= 1z A
s w 23 Ulss ALY
Nz
a1 Tty - 1]
az
HES S au
223 “ a0
#n « an
s 3]
t
w EEATE]
€0
#n i an
% 5
% an
% Ell
S 03
WM
1 au
an
P i

Media shops MediaShop2 I DvDs OK

MediaShop1 Item \ Quantity \ Buy price | Sell price
Frasier 140 1289 0.0

MediaShop3 Leagues-Under-The-Sea 1130 123.09 125.0

MediaShapd ToyStory_And_ToyStory2 |70 [(23.4 |26.0
Spirited-Away 40 18.0 219
Lard-of-the-Ring 150 255 25.66
Die_Another_Day 208 23148 25.99
Harry_Potter 180 44.5 48.07
Chicago 2501 280

55
Add Retmove Save Load
Hide == Cancel

Customer: DYDs Details

Frasier ~ MediaShopd is sleeping: 5.506(s) ~
Leagues-Under-The-Sea ol | | egiaShop? propasas 25 5 waiting
Cheers MediaShop3 proposes:22 5 rejected
ToyStory_And_TayStary3 Quantity Deadlinets) | MediaShop4 proposes:24.99 waiting
Spirited-Away 20 f MediaShop1 proposes:23.5 waiting

------—--- End of iteration 2 -—---—-
a:@‘\npootgg:—[’ay price has been decreased fram 26 to 23
5angs. Of Newvork -~ Broker i5 choosing ...
Chisago MediaShop2 proposes:25.5 : optimal
Sex_And_The_Cily_Season4 Eend
rerih 2 © ;m,‘y;m v Broker has chasen MediaShop2 hd

Fig. 9. The Information Broker of E-Media

5 Conclusion

Software engineering for new enterprise application domains such as e-business is
forced to build up open systems able to cope with distributed, heterogeneous, and
dynamic information issues. Most of these software systems exist in a changing or-
ganizational and operational environment where new components can be added,
modified or removed at any time. The area of multi-agent systems (MAS) is promis-
ing in order to help designing such complex system. Indeed, currently, several agent
oriented software methodologies have been proposed.

Unfortunately, architectural design for MAS has not received considerable atten-
tion for the past decade. Collection of well-understood architectural styles and pat-
terns exist but for object-oriented rather than agent-oriented systems.

84 Manuel Kolp, T. Tung Do, and Stéphane Faulkner

Considering the social intrinsic nature of MAS, this paper has proposed a social-
driven framework to design architectures for such systems. The framework considers
MAS architectures at two social levels: Organizational architectural styles constitute a
macro level; at a micro level it focuses on the notion of social design patterns.

In particular we have detailed and adapted the structure-in-5, a well-understood
organizational style used by organization theorists and the Broker social design pat-
tern viewed as a combination of several other social patterns.

The paper has proposed a validation of the framework: it has been applied to de-
velop E-Media, an e-business platform implemented on the JACK agent development
environment.

References

1. P. Kruchten: The Rational Unified Process: An introduction. Addison Wesley, 2003.

2. M. Shaw and D. Garlan: Software Architecture: Perspectives on an Emering Discipline.
Prentice Hall, 1996.

3.-E. Gamma, R. Helm, J. Johnson, and J. Vlissides: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.--

4. M. Kolp, P. Giorgini and J. Mylopoulos. “A Goal-Based Organizational Perspective on
Multi-Agents Architectures”, Proceedings of the Eighth International Workshop on Agent
Theories, architectures, and languages (ATAL’01), 2001.

5. M. Kolp, P. Giorgini, and J. Mylopoulos: “Information systems development through so-
cial structures”. Proceedings of the 14th International Conference on Software Engineering
and Knowledge Engineering (SEKE'02), Italy, 2002.

6. S. Faulkner, M. Kolp, A. Coyette and T. T. Do: “Agent Oriented Design of E-Commerce
System Architecture”. Proceedings of the 6th International Conference on Enterprise In-
formation Systems (ICEIS’04), Porto, Portugal, April 2004.

7. L. Bass, P. Clements, and R. Kazman: Software Architecture in Practice. Addison-Wesley,
1998.

8. H. Mintzberg: Structure in fives : designing effective organizations. Prentice-Hall, 1992.

9. W.R. Scott: Organizations: rational, natural, and open systems. Prentice Hall, 1998.

10. M.Y. Yoshino and U. Srinivasa Rangan: Strategic alliances : an entrepreneurial approach
to globalization. Harvard Business School Press, 1995.

11. P. Dussauge and B. Garrette: Cooperative Strategy: Competing Successfully Through Stra-
tegic Alliances. Wiley and Sons, 1999.

12. J. Morabito, I. Sack, and A. Bhate: Organization modeling: innovative architectures for the
21% century. Prentice Hall, 1999.

13. L. Segil: Intelligent business alliances: how to profit using today's most important strategic
tool. Times Business, 1996.

14. E. Yu: Modeling Strategic Relationships for Process Reengineering. PhD thesis, Univesity
of Toronto, Department of Computer Science, Canada, 1995.

15. T. T. Do, M. Kolp and A. Pirotte: “Social Patterns for Designing Multi-Agent Systems”.
Proceedings of the 15th International Conference on Software Engineering and Knowledge
Engineering (SEKE 2003), San Francisco, USA, July 2003.

16. JACK Intelligent Agents. http://www.agent-software.com/.

17. L. Chung: ,Representing and Using Non-Functional Requirements: A Process-Oriented
Approach”. Ph.D. Thesis, Department of Computer Science, University of Toronto,
Canada, 1993.

18. P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani: “Reasoning with goal
models”. Proceedings of the 21st Int. Conf. on Conceptual Modeling, ER 02, Tampere,
Finland, October 2002.

Systematic Integration
Between Requirements and Architecture

Licia R.D. Bastos! and Jaelson F.B. Castro?

! Banco do Brasil S.A, UF-Tecnologia, Brasilia DF, Brazil
luciabastos@bb.com.br

2 Universidade Federal de Pernambuco, Centro de Informatica, Recife PE, Brazil
jbcecin.ufpe.br

Abstract. Software systems of today are characterized by increasing size, com-
plexity, distribution and heterogeneity. Understanding and supporting the inter-
action between software requirements and architectures remains one of the
challenging problems in software engineering research. The terminology and
concepts used for architectural description are quite different from those used
for the requirement specification. In spite of this, there is a clear relationship
between requirements and architectures. In this chapter we present an approach
for integration of system requirements and software architectures within the
context of the Tropos project, an information system development framework
that is requirement-driven in the sense that it adopts concepts used during early
requirements analysis. Our framework advocates that a software system corre-
sponds to the organizational structure, in which actors are members of a group
in order to perform specific tasks.

1 Introduction

Requirements Engineering and Software Architecture have become established areas
of research, education and practice within the software engineering community. Re-
quirements engineering is concerned with identifying the purpose of the system and
the context in which it will be used. Requirements are related to concepts such as
goals, conflicts, options and agreements [14]. Moreover, systems characteristics and
properties (functional and non-functional) are also described in terms of requirements
[7]. Software architectures are important because they represent the particular ab-
straction for understanding the structure of a system [1], [11]. The software architec-
ture has long been recognized to have a profound impact on the achievement of non-
functional goals ("ilities") such as availability, reliability, maintainability, safety,
confidentiality, evolvability, and so forth.

Unfortunately, terminology and concepts used for architectural description are
quite different from those used for requirement specification. In spite of this, there is
a clear relationship between requirements and architectures. Understanding and sup-
porting the interaction between software requirements and architectures remains one
of the challenging problems in software engineering research. In this chapter we pres-
ent an approach for integration of system requirements and software architectures
within the context of the Tropos project, an information system development frame-
work that is requirement-driven in the sense that it adopts organizational concepts
used during early requirements analysis [5], [6]. Our framework proposes that a soft-

R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 85-103, 2005.
© Springer-Verlag Berlin Heidelberg 2005

86 Lucia R.D. Bastos and Jaelson F.B. Castro

ware system corresponds to the organizational structure, in which actors are members
of a group (software system) in order to perform specific tasks [2], [3]. An organiza-
tion comprises groups, members, roles and interactions. A member assigned to a role
does not work in isolation but interacts and cooperates with other roles.

The extensive use of roles in multi-agent system design emphasizes their impor-
tance for complex domains and implementation [9], [17], [21], [32]. Roles can be
used both as an intuitive concept in order to analyze requirements in multi-agent
systems as well as a behavioural structure in order to implement coherent software
architectures.

This chapter is structured as follows. Section 2 presents some basic concepts. Sec-
tion 3 overviews our approach in context of the Tropos methodology and introduces
i* (i-star) requirement models and organizational architectural styles. Section 4 out-
lines the definitions of our framework. Section 5 presents the activities of our pro-
cess. Finally, Section 6 concludes the paper with considerations, related works, con-
tributions and points for further research.

2 Organizational Concepts and Role Theory

The wide variety of subjects and disciplines covered by organizational sciences has
given rise to several models and theories on organizations. Role theory can also be of
some use as it is widely applied for enterprise modeling, postulating that individuals
occupy positions in an organization [4]. In every organization in a society, people
play various roles to implement various functions of the system. Roles might be
“president’, “financial manager” or “secretary” and so on.

Organizations are social groups that are goal-directed and have a set of structured
activities to achieve their goals [10]. A social group is a structured set of actor mem-
bers (sub-groups or agents) that agree on a minimal set of acceptable behaviors. A
role is derived through empirical observation of the way that people (actors) work in
a particular business setting. This view of an organizational group has a closer align-
ment to the functioning of the real world. In our approach, organizational concepts
are described in terms of the actor members and the roles that they play:

e Actor is an entity with intentional properties, such as goals, beliefs, abilities and
compromises. Actors may be people, software agents or organizational units
(group or sub-group). An actor is an entity (e.g., ‘university’ or ‘professor’) that
plays one or more roles.

» Group is an organization unit (e.g., “university’) with a set of organized mem-
bers being involved in social relationships, pursuing common goals for some
period of time with an identifiable domain.

> Agent is a member of a group (e.g., ‘professor’), which plays roles. In this
work, agents are system entity, situated in the group environment that is capa-
ble of flexible autonomous action in order to meet their goal.

® Role is an abstract representation of the behavior of actor(s) that perform similar
functions in a group, i.e., a role denotes a collection of responsibilities (e.g., ‘edu-
cator’, ‘adviser’, etc.). Discharging these responsibilities requires the realization
of a set of role responsibilities. For example, the ‘teacher’ role involves the tasks
‘to teach’ and ‘to supervise’.

Systematic Integration Between Requirements and Architecture 87

o Responsibility identifies the set of tasks necessary to achieve social objectives
(goals) of an actor playing a role.

e Goal is a condition or state of affairs in the world that the stakeholders would like
to achieve.

o Task specifies a particular way of doing something. Tasks can also be seen as the
solutions in the target system, which will satisfy the goals. These solutions pro-
vide operations, processes, data representations, structuring and constraints to
meet the needs stated in the goals.

An important point to note is the distinction between the actor, i.e. the physical or-
ganizational entity, and the role, a notion that expresses the responsibility of satisfy-
ing certain organizational goal by performing the various tasks within the group.
Roles are assigned to actors and summarize a set of skills or capabilities necessary to
fulfill a goal. The role is separate from the actor that plays the role. For example, a
‘professor’ may play multiple roles such as ‘educator’, ‘department chair’, etc.

Role in specific contexts of action provide abstract specifications of distributed be-
havioral patterns. When these roles are performed in a coordinated fashion, they can
accomplish a specific objective. Explicit specification of roles, their relations and
interdependencies provide a shared context for a group of agents to track the tasks
performed.

Others approaches are using roles concepts for modeling social actors in organiza-
tional structures [10], social agents in multi-agent system [16], [17], [19], [26], [27],
[32], and authority in role-based access control (RBAC) [8]. The extensive use of
roles evidences the need for organizational role thinking in multi-agent system re-
quirements [21]. Nevertheless, there is not an agent framework or methodology that
provide all abstractions to support organizational groups, roles and interactions in
building MAS following an architectural style. In the sequel we consider our ap-
proach in context of the Tropos methodology.

3 Tropos Methodology

The Tropos methodology adopts the view of information systems as social structures,
that is a collection of social actors, human or software, which acts as agents, posi-
tions, or roles and have social dependencies among them [5], [6]. The Tropos meth-
odology spans four phases:

1. Early requirements - concerned with the understanding of a problem by studying
an organizational setting; the output is an organizational model that includes rele-
vant actors, their goals and dependencies.

2. Late requirements - the system-to-be is described within its operational environ-
ment, along with relevant functions and qualities.

3. Architectural design - the system’s global architecture is defined in terms of sub-
systems, interconnected through data, control and dependencies.

4. Detailed design - behavior of each architectural component is defined in further
detail.

The Tropos methodology does not explicitly cover the correlation between re-
quirement elements and architectural elements. Moreover, the information available
in the late requirement models is not enough to derive architectural information. In

88 Lucia R.D. Bastos and Jaelson F.B. Castro

order to address this issue, the Systematic Integration between Requirements and
Architecture (SIRA) framework provides a set of elements to specify properties of
organizational groups as well as helping to derive architectural properties in the con-
text of the Tropos methodology, as show in Fig. 1.

i* TROPOS
SIRA Framework |

\J)

(\" a\e \‘(0 N\

€2 0 Vi PPt 0? oo
W d ée
W W pe &
@ @

Fig. 1. SIRA Framework in Tropos context

In the following we present a modeling framework for requirements analysis and
the organizational-inspired architectural catalogue from Tropos. The requirement
models and the architectural catalogue are used as input in the SIRA Process.

3.1 The Requirement Model

The i* (i-star) framework focuses on the modeling of strategic actor relationships of a
richer conceptual model of business processes in their organizational settings [28],
[29].

o e (Songual: : GDEI:

Fig. 2. Elements from the i* framework

The participants of the organizational setting are actors with intentional properties,
such as, goals, beliefs, abilities and compromises. A dependency describes an
“agreement” (called dependum) between two actors playing the roles of depender and
dependee, respectively. The depender is the dependent actor, and the dependee, the
actor who is depended upon. Dependencies have the form depender—depen-
dum—dependee (see Fig. 2).

The i* technique consists of two models: Strategic Dependency Model (SD) and
Strategic Rationale Model (SR). The Strategic Dependency Model (SD) includes a set
of nodes and links connecting them, where nodes represent actors and each link indi-
cates a dependency between two actors. There are four types of dependencies — goal
dependency, resource dependency, task dependency and soft-goal dependency. The
second model of the i* technique is the Strategic Rationale Model (SR model). It is
used to: (i) describe the interests, concerns and motivations of participants in the

Systematic Integration Between Requirements and Architecture

89

process; (ii) enable the assessment of the possible alternatives in the definition of the
process; and (iii) research in more detail the existing reasons behind the dependencies

between the various actors.

e
T?Wm ang.ﬁﬁ? P rocss P
) oirdeors Cim-Hnes
T
Bank
Intomel (0
i~ 5"""":‘5 Bl L by Seury
L * .
r-__ T L i T
' cgmﬁ“ nﬁﬂ’:
25 _ et
‘ bl " amal ""'F. ‘m{ Caldogue
h _l‘_ 2
= L r Hayword
X IR Pl m-r oy
i,) { et — Poa
B A T e
deniicationy § 7o
Ciail 2
Select llem Handard
=5
F

Fig. 3. The SD model of the e-commerce example

In Fig. 3, we have the Strategic Rationale model of an e-commerce example. The
Media Shop is a store selling and shipping different kinds of media items such as
books, newspapers, magazines, audio CDs, videotapes and the like. To increase mar-
ket share, Media Shop has decided to open up a B2C retail sales front on the Internet.
The system has been named Medi@ and is available on the world-wide-web using
communication facilities provided by Telecom Cpy. It also uses financial services
supplied by Bank Cpy, which specializes on on-line transactions. The Medi@ system
is introduced as an actor in this strategic dependency model.

The analysis focuses on the software (Media), instead of an external stakeholder.
The figure postulates a root task Internet Shop Managed providing sufficient support

90 Lucia R.D. Bastos and Jaelson F.B. Castro

to the softgoal Increase Market Share. That task is firstly refined into goals Internet
Order Handled and Item Searching Handled, softgoals Attract New Customer, Secure
and Usable and tasks Produce Statistics and Maintenance. Internet Order Handled is
achieved through the task Shopping Cart, which is decomposed into subtasks: Select
Item, Add Item, Check Out, and Get Identification Detail. More details can be
founded in [5].

3.2 Architectural Catalogue

System architecture constitutes a relatively small, intellectually manageable model of
the system structure, which describes how systems components work together. An
architectural style determines the vocabulary of components and connectors that can
be used in instances of that style, together with a set of constraints on how they can
be combined [11], [24].

Tropos has defined an organizational architectural catalogue for cooperative, dy-
namic and distributed applications to guide the design of the system architecture [12],
[13]. These architectural styles (pyramid, joint venture, structure in 5, takeover,
arm’s length, vertical integration, co-optation, bidding) are based on concepts and
design alternatives coming from research on organization management [18].

This work also uses the UML-RT (Unified Modeling Language for Real Time Sys-
tems) [23] as notation to represent the organizational architectural catalogue. The
notation of capsules, ports and connectors is used to model the architectural actors
and their dependencies [25]. Capsules are specialized active classes used for model-
ing self-contained components of a system.

In Tropos, actors are active entities that carry out actions to achieve goals by exer-
cising their know-how. Hence, an actor is mapped to a capsule. When an actor is a
depender of some dependency, its corresponding capsule has an implementation port
to exchange messages. Ports are physical parts of the implementation of a capsule
that mediate the interaction of the capsule with the outside world. A dependency
describes an “agreement” (called dependum) between two actors playing the roles of
depender and dependee, respectively. A protocol is an explicit specification of the
contractual agreement between its participants, which play specific roles in the proto-
col. Hence, a dependum is mapped to a protocol and the depender and dependee are
mapped to protocol roles that comprise the protocol (see Fig. 4).

Depernder ',“’- — S Depaidse
B, Depetachm H
I““-‘—- — -~
==zcapsule== ==protacol== ==rgpsule==
Capsules Frotacol CapsuleB
z=port== <=protocolRole==| |==protocolRaolas= ==port==
Fortl |- Depender Dependee =—1-1{ Fonz

Fig. 4. Mapping dependency between actors to UML-RT

Systematic Integration Between Requirements and Architecture 91

Due to lack of space in this chapter we only detail the joint venture style that is a
decentralized style based on an agreement between two or more components called
principal partners who benefit from operating at a larger scale and reuse the experi-
ence and knowledge of their partners. Each principal partner is autonomous on a local
dimension and interacts directly with other principal partners to exchange services,
data and knowledge. However, the strategic operation and coordination of the joint
venture is delegated to a Joint Management actor, who coordinates tasks and manages
the sharing of knowledge and resources.

Each actor is mapped to a capsule. Each dependency is mapped to a connector.
Each dependum, i.e., the agreement between two actors is mapped to protocol. When
an actor is a dependee of some dependency, its corresponding capsule has an imple-
mentation port (end port) for each dependency (ex. Portl), which is used to provide
services for others capsules. When an actor is a depender of some dependency, its
corresponding capsule has an implementation port (relay port) to exchange messages
(e.g., Port3). This architectural style includes six capsules as shown in Fig.5. The
capsule Joint Management is responsible for ensuring the strategic operation and
coordination of such a system and its partner capsules on a global dimension.
Through the delegation of authority, it coordinates tasks and manages the sharing of
knowledge and resources. The two secondary partners are capsules responsible for
supplying services or for supporting tasks for the organization core. The three princi-
pal partners are capsules responsible for managing and controlling themselves on a
local dimension. They can interact directly with other principal partners to exchange,
provide and receive services, data and knowledge.

<<¢apesube ==
Principal Partier _n

; -
Fortd: ContractuaiParesment BortZ:Anthorty Delegation FPortd ResourcelExchange~
FPortd: Anthonty Dekegation~

<<capsle ==
Joint Management

Port: Coordnalion
. PortiAdded |l aine
Pont?: Contractual ﬂ_lqreemenf- Fors: Coardination

| M-
<<gapsukes=>
Princiral Partner _1

— Portl:Kpnowledns Shanbeg Port! 3:ResourelEwchanne
PortdSuppiinglSendgces~
Port! & Knowledge Shanng~

<<capsi
Principal Pariner _2

Port! VAdded|liaine~

1
| S |

Portl S Supmpo st
PortlESupahinglSenies

Paort! F-Sumpart

<<capsuke=> =< capsuke=>
Secondary Patner_1 Secondary Patner_n

Fig. 5. Using UMLRT collaboration diagram to represent the Joint Venture Style

92 Lucia R.D. Bastos and Jaelson F.B. Castro

More details about organizational styles in UML-RT can be found in [25]. The
SIRA Framework will be detailed in the next section.

4 SIRA Framework

The SIRA (Systematic Integration between Requirements and Architecture) frame-
work describes a software system from the perspective of an organization [2], [3]. We
advocate that the organizational structure must include the description of organization
objectives and the means for their realization. The organizational view extracted from
both Strategic Dependency-SD and Strategic Rationale-SR models is used to capture
system-related goals.

GO SIRA Elements
models
. SIRA Process .
Architectural Architectural
catalogue model

Fig. 6. The SIRA Framework

The SIRA Framework is composed of SIRA Elements and the SIRA Process, as
shown in Fig. 6: SIRA Elements includes the definitions of organizational Elements
(Group and Roles) and Architectural elements. These elements are used to extend the
requirement models with organizational information useful for the derivation of
architectural models; and the SIRA Process, which uses as input the requirements
models and architectural catalogue. It generates the SIRA Elements and Architectural
models, as output. Each SIRA element specification will be detailed below.

4.1 Organizational Elements

This work is concerned with the definition of group and functional roles within the
organizational system. The software system will be described as an organizational
group structure, in which actors are members of a group in order to perform specific
tasks. The organizational structures considers a group as a collection of roles whose
behavior co-operatively determines the accomplishment of organizational goals. The
organizational group structure is defined in order to represent the social structure of
an agent society. The Group (or sub-group) specification is shown in Table 1. Each
Group should have a unique name. Moreover, groups are described in terms of their
goals, the roles played by their members and norms that apply to the actor tasks.

Table 1. Group
Group A unique name
Goals Set of main goals that the group should accomplish.
Roles Division of labour between the members of a group
Norms A list of normative expressions that apply to this group

As seen in Table 2, roles have a unique name and are described in terms of objec-
tives to be fulfilled when performing the role. Responsibilities are a list of task ex-

tracted from the set of main goals to be fulfilled by actors, such as “Place order” or
and from interactions between roles. Collaborators are the set of
interactions the role has with other roles. Skills are the set of expertise need to per-
form the role responsibility. Norms are the set of constraint conditions under what the

“Buy media items”

Systematic Integration Between Requirements and Architecture

actor should be restricted when performing a role.

Table 2. Role

Role A unique name

Objective What an actor of the role is expected to achieve

Responsibilities A list of task and interactions to be performed

Collaborators List of roles it interacts

Skills Set of skills (problem solving knowledge)

Norms A list of normative expressions that apply to this role (interaction proto-
col, conflict resolution)

The role interaction protocols are expressed within a particular organizational
level, i.e., roles are local to Groups or Sub-Groups. Table 3 shows the specification of
an interaction protocol. The protocol is a normative expression on the set of interac-

tions that a role has with other roles.

Table 3. Interaction Protocols

Protocol A unique name

Objective Brief description of the nature of the interaction

Initiator Role(s) responsible for starting the interaction

Responder Role(s) with which the initiator interacts

Inputs Information used by the role initiator while enacting the protocol

Outputs Information supplied by/to the protocol responder during the course of the
interactions.

4.2 Architectural Elements

Architectural elements include processing, data and connecting elements. Each archi-
tectural element is defined by their properties and relationships [22]. Architecture of a
system can be described as a collection of computational components together with a
description of the interactions between these components [11]. This chapter uses the
terms of components and connectors to refer to processing and connecting elements,

respectively. Architectural elements are:

e Components — components are the most easily recognized aspect of software ar-
chitecture. In [22] processing elements are defined as those components that sup-
ply the transformation on the data elements. In [11] components are described as
the elements that perform computation. A component is an abstract unit of soft-
ware instructions and internal state that provides a transformation of data via its
interface (or ports). A component is defined by its interface and the services it

provides to other components.

e (Connectors - A connector is an abstract mechanism that mediates communication,
coordination or cooperation among components [24]. Perhaps the best way to
think about connectors is to contrast them with components. Connectors enable
communication between components by transferring data elements from one in-

terface to another without changing the data.

94 Lucia R.D. Bastos and Jaelson F.B. Castro

o Constraints — The set of architectural constraints of software architecture includes
all properties that derive from the selection and arrangement of components, con-
nectors and data within the system. Examples include both the functional proper-
ties achieved by the system and non-functional properties, such as relative ease of
evolution, reusability of components, efficiency and dynamic extensibility often
referred to as quality attributes.

To describe the architectural element information we are using some templates.
The template is focus on the logical view of a system including purpose, context and
interfaces. Table 4 contains an example of a component specification. Each compo-
nent should have a unique name. Complex component should be refined into sub-
components with the purpose of describe the internal structure of the component.
Responsibilities describe the purpose of the component in terms of tasks and inter-
face(s) that it provides. Collaborators describe the other components from which the
component requests services in order to achieve its purpose. Some examples of com-
ponents are illustrated in Fig. 5 (e.g., Joint Management).

Table 4. Component specification

Component/Connector | A unique name
Responsibilities Tasks | Interfaces
Collaborators List of components its interacts

Interfaces (or ports) are set of interaction points among itself and the external
world. They cluster tasks and allow the description of services independent of the
components providing them. This is especially convenient if a set of tasks is sup-
ported by more than one kind of component so that the set can be referred to in the
description of components. It is also very helpful when a component has several re-
sponsibilities, each responsibility being expressed by a different interface. Some ex-
amples of interfaces are illustrated in Fig. 5 (e.g., Portl: Contractual Agreement).

The SIRA Process will be detailed in the next section.

5 SIRA Process

The SIRA Process consist of three activities (see Fig. 7): The first one, Analyzing
Elements takes as input the i* Requirement models (together with the Architectural
catalogue) to generate the SIRA Elements. The second activity is Selecting Architec-
ture. It relies on the use of Non-Functional Requirements framework (NFR) to select
architectural styles, based on non-functional requirements extracted from i* models.
The third activity, Relating Elements links the SIRA Elements to architectural ele-
ments and generates the architectural model. Each activity will be outlined in the sub-
sections

5.1 Analyzing Elements

The first activity, Analyzing Elements, consists of guidelines to identify groups and
roles. The organizational context is used to identify the functionality that the system
component should provide. Hence, the input to this step is the i* requirements mod-

Systematic Integration Between Requirements and Architecture 95

Analyzing Selecting
Elements Architecture

Relating
Elements

A 4

i* Requirements models
Architectural catalogue SIRA Element Architectural
model

Fig. 7. The SIRA Process

els. As output we have the SIRA Elements to complement the information of re-
quirements elements. This activity includes four sub-activities. Each one is used to
support the mapping from the i* strategic rationale model into SIRA-Elements:

1. Identify Groups — A group is composed of an actor (or a set of actors) with activi-
ties to be performed. The Medi@ system is an example of a Group. It is an
e-commerce information software system that supports tasks of the commerce of
media items in the Word Wide Web. For example, the main goal of Medi@ actor
is to provide service for the other actors such as Media Shop and Customer. Con-
sequently, the main responsibilities are to fulfil the main goals identified as:
“Process Internet Orders”, “Buy Media Items” and “Find Users New Needs” (as
seen in Fig. 3).

2. Identify Goal Refinement — The Group responsibilities are identified from the
main goal dependencies and task decomposition. Group responsibility involves
the refinement of main goals and the distribution of task to be performed.

Fig. 8 shows the goal refinement with i* means-ends analysis and AND/OR de-
composition [05]. In particular means-end analysis aims at identifying tasks, re-
sources and softgoals that provide means for achieving a goal. The goal ‘Buy Me-
dia Item’ is achieved through the tasks ‘Consult catalogue’, ‘Place order’ and
‘Process order’. The task ‘Consult catalogue’ is achieved through the tasks

‘Browse catalogue’ or ‘Keyword search’.
Add Item

Order
Shopping
=
Browse
Catalogue %
OR decompaszition AND decomposition

Consult
Catalogue Keyword
Search

Fig. 8. The partial goal refinement for ‘Buy Media Items’

96

3.

4.

Lucia R.D. Bastos and Jaelson F.B. Castro

Identify Roles and Relations — Roles are captured in a specific and bounded do-
main. For example, the e-commerce domain can identify role such as Buyer,
Seller or Manager. A role clusters types of behavior into a meaningful unit (role
responsibility), which is required to contribute to the group goals. Roles are not
isolated. Every role communicates and interacts with other roles. Role responsibil-
ity allocation involves the definition and distribution of tasks and interactions to
perform a full group goal. If we considering the goal ‘Buy Media Item’ (see
Fig.8), a possible set of roles and responsibilities for Medi@ Group is identified
as follows:

e Seller Role is responsible for handling the internet shopping services and for
supplying customers (playing the Buyer Role) with a web interface to keep
track of items the customer is buying (ex. Consult catalogue and Place order).

e Order Provider Role is responsible for handling the process services that will
be executed for a given order (ex. Process Order).

e Security Manager Role is responsible for monitoring and controlling the secu-
rity check services, suck as: customer profiler and security order form.

e Delivery Provider Role is responsible for interacting with information system
of delivery companies.

Fig. 9 shows the interaction sequence of UML collaboration graph [20] with the
roles played to fulfill the group goal ‘Buy Media Item’ and their interaction pro-
tocols. The interaction protocols are expressed within a particular organizational
level, i.e., roles are local to Groups or Sub-Groups. Note that UML collaboration
diagram interaction semantics provide a precedence relation (i.e., partial order)
among interactions. The interaction sequence can be viewed as directed and
acyclic graph, with the nodes representing the roles and the arc representing the
interaction among them. This representation makes it possible to distinguish be-
tween roles that interact and those that do not.

1: Consult 6: Process
2: Request Order
= =5
Buyer < Seller
<+
5: N 7.1: Commit
3: Request
profiler l T 4: Assert 7.2: Delivery

Order

Security
Manager

Delivery
Provider

Interaction
Sequence
—>

Fig. 9. Role interaction model and a protocol specification between two roles

Identify Sub-group and Interactions — In the most basic form, groups are just a
way to refer to a set of roles performing a collaborative set of tasks. Group com-
prises roles and their interrelations. Thus, identifying Sub-Group concerns decid-
ing on the number and types of roles that should be related, as well as on the
number of roles that a group of agents should play. In order to group actor playing
roles, this work relies on two organizational structural views: relational and posi-

Systematic Integration Between Requirements and Architecture 97

tional [31]. In the relational view, actor members (or agent) are clustered together
based on the strength of the direct relationships with others also referred to as co-
hesion. The positional approach clusters actor members who have similar pattern
of relations with others. All those playing a similar role are said to occupy similar
structural status positions (see Table 5).

Table 5. Patterns of relationships in organizational structure

Relational Positional
Clusters based on: | Cohesion Structural similarity
Belief sharing based | Interaction with similar | Playing similar roles creates
on: | others creates shared | shared beliefs among those in
beliefs among the | the same role position
clusters members

In the e-commerce example, we grouping actors based on structural similarity. The

main set of sub-groups is:

1. Store Front sub-group interacts primarily with Customer and provides her with a
front-end web application.

2. Back Store sub-group keeps track of all information about customers, products,
sales, bills and other strategic important data.

3. Billing Processor sub-group is in charge of the secure management of orders and
bills, and other financial data.

4. Manager sub-group manages all of other sub-groups controlling security gaps,
availability bottlenecks and adaptability issues.

An important task during architectural design is to select among alternative archi-
tectural styles. For each type of alternative, decisions have to be made that, in the end,
will produce different architectures.

5.2 Selecting Architecture

Software architectures has been the focus of considerable research, which has re-
sulted in a collection of well-understood architectural styles and a methodology for
evaluating their effectiveness with respect to particular software qualities. However,
there exist few evaluations of MASs in terms of software qualities. Some software
quality attributes for multi-agent architectures were identified from a perspective of
organizational styles as architectural styles: predictability, security, adaptability, co-
ordinativity, availability, integrity, modularity, aggregability [12], [13], [30].

A specific refinement, resolution or assignment is selected based on qualitative
preferences dictated by positive contributions to high-priority softgoals [7]. This
activity involves refining these qualities, represented as softgoals, to sub-goals that
are more specific and more precise and then evaluating alternative architectural styles
against them, taking into account a specific context (or domain). This SIRA activity
includes three sub-activities:

1. Identify Architectural Constraints: The input to this sub-activity is a list of re-
quirements, which corresponds to functions, services, constraints or quality attri-
butes. A requirement is an item for which the designer has freedom to choose a
solution. A constraint restricts the decision a designer must take. During require-

98

Lucia R.D. Bastos and Jaelson F.B. Castro

ments capture, constraints come primarily from the business goals surrounding the

system (functional and non-functional requirements). The following quality con-

straints to select a business-to-consumer architectural alternative could be stated

accordmgly [6], [12]:
Security: Clients exposed to the internet are, like servers, at risk in web appli-
cations. It is possible for web browsers and application servers to download or
upload content and programs that could open up the client system to crackers
and automated agents.

= Adaptability: deals with the way the system can be designed using generic
mechanisms to allow web pages to be dynamically changed. It also concerns
the catalogue update for inventory consistency.

= Availability: Network communication may not be very reliable causing spo-
radic loss of the server. There are data integrity concerns with the capability of
the e-business system to do what needs to be done, as quickly and efficiently
as possible in particular with the ability of the system to respond in time to cli-
ent requests for its services.

2. Apply NFR Framework: A more precise and systematic analysis of these quality

attributes can be done with goal-oriented frameworks such as KAOS [15] or the
NFR (non-functional requirements) Framework [7]. In the NFR framework, quali-
ties are represented as softgoals. Analyzing them amounts to a means-ends de-
composition of softgoals into more fine-grained subgoals. Each pattern contrib-
utes positively/negatively to some of the identified subgoals. As an example, we
compare four architectural styles, including some conventional (Pipes & Filter,
Layers) [11] and organizational (Structure in 5, Joint Venture) ones. The notations
used by the NFR framework includes: +, ++, -, -- to model partial/positive, suffi-
cient/positive, partial/negative and sufflclent/negatlve contributions, respectively.

Table 6. Strengths and weaknesses of 4 architectural styles

PIPES & |LAYERS |(S-IN-5 | JOINT

FILTERS VENTURE
Security + +- + +
Availability +- + + +
Adaptability - +- +- T+

Table 6 summarizes strengths and weaknesses of the four architecture styles with
respect to the software quality attributes of Medi@ application. The layered archi-
tecture gives precise indications as to the components expected in a business to
consumer system. The pipes-and-filters pattern concentrates on the dynamics of
input/output data streams. The organizational patterns (Structure-in-5 and Joint
Venture) focus on how to organize components expected in an e-business system
as well as on the intentional and social dependencies governing these compo-
nents. More detailed evaluation with respect to the three agent software quality at-
tributes (Security, Adaptability and Availability) can be found in [12].

. Select Architectural Style: The choice of architectural style is based on the ap-

plication domain. Once the architectural style has been chosen, it should be con-
form to the application domain functional and non-functional requirements. The
result of choosing and refining an architectural style is a collection of (architec-

Systematic Integration Between Requirements and Architecture 99

tural) component types and interactions. However, considering preliminary results
from Table 6, we can argue that the organizational architectural styles (Joint-
Venture or Structure in 5) better fit systems and applications that need open and
cooperative components such as seen in the e-commerce example. Table 6 sug-
gests the Joint-Venture architectural style as a better solution because it is a more
decentralized style.

The next activity will address the mapping among SIRA Elements and architec-
tural components of the selected style.

5.3 Relating Elements

The Relating Element activity defines the relationships among requirements and ar-
chitectural elements, i.e., for example, each joint venture component will be related to
each Sub Group identified during the Analyzing Elements phase.

In order to relate requirements and architecture, an important step is to compare
the behavior of the SIRA group and the behavior of a component in a specific archi-
tectural style. For a component, typical usage of interfaces is specified while Group
specifies how a set of roles interact. Groups and their role interactions should be com-
patible with components and their interfaces. In the case of incompatibility, the deri-
vation process should return to Analyzing Elements activity and the sub-group may
have to be split (or joined). Two different kind of compatibility can be checked:

e Local compatibility — To compare the behavior (tasks and protocols) of the role in
a sub-group with the behavior of the corresponding component in the architectural
pattern. A Sub-group needs to be compatible with the role it plays in the architec-
tural component.

e Global compatibility — To combine the behavior of all sub-groups and take the
intersection with the architectural pattern, i.e. the combination of a set of Sub-
Groups should be compatible with the architectural pattern that connects them in a
full Group structure.

This SIRA activity is composed of three sub-activities:

1. Matching Sub-groups and Architectural Styles — The first step is to check if
there exists at least one compatibility between the subgroups, actors/roles (of the
group) and components/interfaces (of the architectural style). These sub-groups
or actors can become architectural elements (components or agents). In our case
study, the selected style was the Joint Venture (Fig. 5). According to this style, the
Medi@ software architecture can be decomposed into some autonomous compo-
nents: a coordination component named Joint Management, and others compo-
nents identified as Principal Partner_n, Principal Partner_1, Principal Partner_2...,
Secondary Partner_1. The Medi@ Group decomposition into Sub-Groups suggest
a possible assignment of system responsibilities:

e The Store Front Sub-Group, with input order responsibilities, can be related to
Front Store to provide a customer with a usable front-end web application,
which includes a web shopping cart and item browsing.

e The Provider Sub-group, with order-processing responsibilities, can be related
to Billing Processor to support the processing for a given order initialized in
Store Front.

100 Licia R.D. Bastos and Jaelson F.B. Castro

e The Manager Sub-group, with managing responsibilities, can be related to
Joint Manager to manage controlling security, availability and adaptability.

e The Back Store Sub-Group, with support responsibilities, can be related to
Back Store to aggregate functions outside the basic flow of operational tasks,
which includes the delivery of items.

2. Identify Properties of the Architectural Connectors/Interfaces — Components
are bound together by connectors. A connector primarily defines a set of Ports (or
interfaces) that ensures connection points through which a component interacts
with other. A protocol is an explicit specification of the contractual agreement
(obligations) between two components that play specific roles in the protocol. In
the Medi@ architecture, all four sub-components need to communicate and col-
laborate with the system. For instance, Store Front communicates with Billing
Processor relevant customer information required to process bills. Back Store or-
ganizes, stores and backs up all information coming from Store Front and Billing
Processor in order to produce statistical analyses, historical charts and marketing
data.

3. Mapping the Architecture — A first architectural draft is obtained from the set of
sub-groups assigned to functional requirements, identified by roles and interac-
tions. In Fig.10, Medi@ system is decomposed into three principal components
(Store Front, Billing Processor and Back Store) controlling themselves on a local
dimension and exchanging, providing and receiving services, data and resources
with each other. Each of them delegates authority to or is controlled and coordi-
nated by the joint management component (Joint Manager) managing the system
in a global dimension.

6 Final Considerations and Related Work

Software systems demand special care in the requirement and architectural modeling
phases. A number of goal-based requirement approaches, most notably KAOS [15]
and the NFR framework [7], have proposed the explicit use of the notion of ‘goals’ to
structure system requirements and architecture. However, these approaches do not
establish an explicit relation between elements of the problem domain and architec-
tural components in solution domain.

Researches in Multi Agent System show that roles can represent system goal and
constrain the agent behaviors (ex. Aalaadin [9], MESSAGE [17], MaSE [27] and
Gaia [32].

In spite of the significant progress accomplished in the areas of requirement speci-
fication and architectural description, we still need frameworks, techniques and tools
to support the systematic achievements of the architectural objectives in the complex
context of the stakeholders’ needs.

In this chapter we present an approach for the integration of requirements and
software architectures within the context of the Tropos project. The organizational
software architecture is defined at a macro-level. Our approach advocates that a sys-
tem corresponds to the organizational structure, in which actors are members of a
group in order to perform specific tasks. This is an ongoing research and further in-
vestigations are still required to evolve this research. In particular, we need to im-

Systematic Integration Between Requirements and Architecture 101

FonrZ8 Ertrance ForZ7 Exit

1
I
<< capsule>>

Front Store

&= w Wy

| M- | N
FPort|Checkolid FParth: Trtegrit— FortS Ulndat sl
Forp: - Car Pont 7 Usshist Pordd SeloctBEhng

Fortd 3 Qrofile

FPortb fntebrity FPort il Ungstsbai

<< capsule>>

?oint Manager

Pol19 TimeResponse | SortdS Maindainability:
Eof 21 Aoy ForT rConfidadt /a8
PortACheckoli~ Parf22: Autkorie- Fort & Chaficlenliaigy—
Pond: Lo L Polr_? gID.' TimeRasponsar

=

=< capsule=>=
Billing Processor

Port2 3 Delive Port2slaccouht Portl e Profile

FPonrzi:decowrg Pornd2: SelactRbting~
Fort

ForZ4: Daliva

<< capsule>>
Back Stoie

Fig. 10. Medi@ system architecture in UML-RT, the collaboration between capsules occurs
within a context defined by protocol implemented by ports that compose each capsule involved
in the interaction

prove the architectural derivation rules. Among the main concepts we have: a) to
incorporate more detailed rules to analyze the Group structures (group, roles and
responsibilities); b) to incorporate more systematic rules to match architectural com-
ponents from Sub-Groups and Roles; and c) to apply the proposal to more realistic
case studies.

References

1. Bass, L., Clements, P. and Kazman, R. “Software Architecture in Practice”. Addison-
Wesley, (1998).

2. Bastos, L.R.D. and Castro, J.F.B.: “Integrating Organizational Requirements and Socio-
Intentional Architectural Styles”. Proceedings of the Second International Workshop From
SofTware Requirements to Architectures (STRAWO03), 2003. p.114 — 121. In 25th Interna-
tional Conference on Software Engineering 2003 (ICSE'03). Portland, May 2003.

102

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Lucia R.D. Bastos and Jaelson F.B. Castro

Bastos, L.R.D. and Castro, J.F.B.: “Integration between Organizational Requirements and
Architecture”. Proceedings of the VI Workshop em Engenharia de Requisitos (WER03).
Piracicaba, Brasil, November 2003.

. Biddle B. J. and Thomas, E. J.: “Role Theory: Concepts and Research”. New York: Robert

E. Krieger Publishing Company, 1979.

. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J. and Perini, A.: “TROPOS: An

Agent-Oriented Software Development Methodology”. In Journal of Autonomous Agents
and Multi-Agent Systems, Kluwer Academic Publishers Volume 8, Issue 3, Pages 203 -
236, May 2004.

. Castro, J., Kolp, M. and Mylopoulos, J.: “Towards Requirements Driven Information Sys-

tems Engineering: The Tropos Project”. In Information Systems, Vol. 27. Elsevier,
Amsterdam, The Netherlands (2002) 365-389.

. Chung, L., Nixon, B. A., Yu, E. and Mylopoulos, J.: “Non-Functional Requirements in

Software Engineering”. Kluwer Publishing, 2000.

. Crook, R., Ince, D. and Nuseibeh, B.: “Towards an Analytical Role Modeling Framework

for Security Requirements”. Eighth International Workshop on Requirements Engineering:
Foundation for Software Quality REFSQ'02. September 2002. Essen, Germany.

. Ferber, J. and O. Gutknecht.: “A meta-model for the analysis and design of organizations

in multiagents systems”. In Demazeau, Y., ICMAS’ 98, pages 128—135, Paris, 1998.

Fox, M., Barbuceanu, M., Gruninger, M. and Lin, J.: “An Organization Ontology for En-
terprise Modelling”. Simulating Organizations: Computational Models of Institutions and
Groups, M. Pritula, K. Carley & L. Gasser (Eds), Menlo Park CA: AAAI/MIT Press, pp.
131-152. 1996.

Garlan, D. and Shaw, M.: “An introduction to software architecture”. Ambriola & Tortola
(eds.), Advances in Software Engineering & Knowledge Engineering, vol. II, World Scien-
tific Pub Co., Singapore, 1993, pp. 1-39.

T. T. Do, S. Faulkner and M. Kolp.: “Organizational Multi-Agent Architectures for Infor-
mation Systems”. In Proceedings of the 5th International Conference on Enterprise Infor-
mation Systems (ICEIS 2003), Angers, France, April 2003.

Kolp, M., Giorgini, P. and Mylopoulos, J.: “Organizational Patterns for Early Require-
ments Analysis”. 15th International Conference on Advanced Information Systems Engi-
neering (CAiSE'03), Velden, Austria. June 2003.

Lamsweerde, A. van.: “Goal-Oriented Requirements Engineering: A Guided Tour”. Pro-
ceedings of the 5th International Symposium on Requirements Engineering (RE’01).
Toronto, Canada. August 2001, 249-263.

Lamsweerde, A. van.: “Requirements Engineering in the Year 00: A Research Perspec-
tive”. Proceedings of the 22nd International Conference on Software Engineering (ICSE
2000). Ireland. June 2000.

Lupu, E.C. and Sloman, M.: “Towards a role based framework for distributed systems
management”. Journal of Network and Systems Management, vol. 5, no. 1, P. Press, 1997.
MESSAGE: Methodology for Engineering Systems of Software Agents.
www.eurescom.de/~pub-deliverables/P900-series/P907/TI1/. Last accessed in June 2004.
Mintzberg, H.: “Structure in Fives: Designing effective organizations”. P. Hall, 1992.
Odell, J., Parunak, H.V.D., and Fleischer, M.: “The Role of Roles in Designing Effective
Agent Organizations”. Software Engineering for Large-Scale Multi- Agent Systems,
Alessandro Garcia et al, LNCS, Springer, 2003.

Odell, J., Parunak H. Van D., Bauer, B.: “Representing Agent Interaction Protocols in
UML”, Agent-Oriented Software Engineering, Paolo Ciancarini and Michael Wooldridge
eds. Springer-Verlag, Berlin, pp. 121-140, 2001.

Partsakoulakis, 1., and Vouros, G.: “Roles in MAS: Managing the Complexity of Tasks and
Environments”. Multi-Agent Systems: An application Science, T. Wagner (eds.), Kluwer
Academic, 2004.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Systematic Integration Between Requirements and Architecture 103

Perry, D. and Wolf, A.L.: “Foundations for the study of software architecture”. ACM
SIGSOFT Software Engineering Notes, 17(4), Oct. 1992, pp. 40-52.

Selic, B., Gullekson, G. and Ward, P.: “Real Time Object-oriented Modeling”. John Wiley
& Sons, Inc., 94.

Shaw, M. and Clements, P.: “A field guide to boxology: Preliminary classification of archi-
tectural styles for software systems”. Twenty-First Annual International Computer Soft-
ware and Applications Conference (COMPSAC97), Washington, D.C., Aug. 1997, pp. 6-
13.

Silva, C.T.L.L and Castro, J.F.B.: “Detailing Architectural Design in the Tropos Method-
ology”. 15th Conference on Advanced Information System Engineering (CAISE 03).
Klagenfurt, Velden, Austria, 2003.

Trzebiatowski, G. L. and Miinch, L.: “The Role Concept for Agents in Multi-Agent Sys-
tems”. Modelling Artificial Societies and Hybrid Organizations. Workshop at KI2001, the
Joint German/Austrian Conference on Artificial Intelligence. Vienna, 19-21, 2001.

Wood, M.F. and DeLoach, S.A.: “An overview of the Multi-Agent systems engineering
methodology”. First international workshop on Agent-oriented software engineering
(AOSE 2000), p.207-221, January 2001, Limerick, Ireland.

Yu, E., and Mylopoulos, J.: “Modeling Organizational Issues for Enterprise Integration”. -
International Conference on Enterprise Integration and Modeling Technology
(ICEIMT’97). Turin, Italy. October 1997.

Yu, E.: ‘Agent Orientation as a Modeling Paradigm”. Wirtschaftsinformatik. 43(2) April
2001. pp. 123-132.

Yu, E.: “Modeling Strategic Relationships for Process Reengineering”. Ph.D. thesis,
Department of Computer Science, University of Toronto, Canada (1995).

Zack, M. H.: “Researching Organizational system using social network analysis”. Proceed-
ings of the 33rd Hawaii International Conference on System Sciences. Maui, Hawaii,
January 2000 (IEEE 2000).

Zambonelli, F., Jennings, N.R., and Wooldridge, M.: “Developing Multi-Agent Systems:
The Gaia Methodology”. ACM Transactions on Software Engineering and Methodology,
12(3): pp. 317-370. 2003.

Integrating Free-Flow Architectures
with Role Models Based on Statecharts

Danny Weyns, Elke Steegmans, and Tom Holvoet

AgentWise, DistriNet
Department of Computer Science K.U.Leuven
Celestijnenlaan 200 A
B-3001 Leuven, Belgium
{Danny.Weyns,Elke.Steegmans,Tom.Holvoet }@cs.kuleuven.ac.be

Abstract. Engineering non-trivial open multi-agent systems is a chal-
lenging task. Our research focusses on situated multi-agent systems,
i.e. systems in which agents are explicitly placed in a context —an en-
vironment — which agents can perceive and in which they can act. Two
concerns are essential in developing such open systems. First, the agents
must be adaptive in order to exhibit suitable behavior in changing cir-
cumstances of the system: new agents may join the system, others may
leave, the environment may change, e.g. its topology or its character-
istics such as throughput and visibility. A well-known family of agent
architectures for adaptive behavior are free-flow architectures. However,
building a free-flow architecture based on an analysis of the problem do-
main is a quasi-impossible job for non-trivial agents. Second, multi-agent
systems developers as software engineers require suitable abstractions for
describing and structuring agent behavior. The abstraction of a role ob-
viously is essential in this respect. Earlier, we proposed statecharts as a
formalism to describe roles. Although this allows application developers
to describe roles comfortably, the formalism supports rigid behavior only,
and hampers adaptive behavior in changing environments.

In this paper we describe how a synergy can be reached between free-
flow architectures and statechart models in order to combine the best
of both worlds: adaptivity and suitable abstractions. We illustrate the
result through a case study on controlling a collection of automated
guided vehicles (AGVs), which is the subject of an industrial project.

1 Introduction

Dealing with the increasing complexity of developing, integrating and managing
open distributed applications is a continuous challenge for software engineers.
In the last fifteen years, multi-agent systems have been put forward as a key
paradigm to tackle the complexity of open distributed applications. In this paper
we focus on situated multi-agent systems® (situated MASs) as a generic approach

1 Alternative descriptions are behavior-based agents [4], adaptive autonomous agents
[22] or hysteretic agents [16][14].

R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 104-120, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Integrating Free-Flow Architectures with Role Models Based on Statecharts 105

to develop self-managing open distributed applications. In particular, we propose
an approach that combines aspects of adaptive agent architectures with ideas
of rigid modeling of agent behavior for developing these kinds of multi-agent
systems.

In situated MASs, agents and the environment constitute complementary
parts of a multi-agent world which can mutually affect each other [33]. Situated-
ness places an agent in a context in which it is able to perceive its environment
and in which it can (inter)act. Intelligence in a situated MAS originates from the
interactions of the agents in their environment rather than from the capabilities
of the individual agents. While interacting, agents form an organization in which
they all play and execute their own role(s) in that organization.

The approach of situated MASs has a long history. R. Brooks [4][5] identified
the key ideas of situatedness, embodiment and emergence of intelligence. L. Steels
[31] and J. L. Deneubourg [11] introduced the basic mechanisms for agents to
coordinate through the environment: gradient fields and marks. P. Maes [22]
adopted the early robot-oriented principles of reactivity in a broader context of
software MASs. J. Ferber and A. Drogoul [13], M. Dorigo [12], V. Parunak [27]
and many other researchers drew inspiration from social insects and adopted the
principles in situated MASs. Where the approach of situated MASs started from
the rejection of classical agency based on symbolic Al, nowadays the original op-
position tends to evolve towards convergence with different schools emphasizing
different aspects. The researchers, although having different points of view, are
very complementary, and each have their own applications.

Situated MASs have been applied with success in numerous practical applica-
tions over a broad range of domains, e.g. manufacturing scheduling [28], network
support [3] or peer-to-peer systems [1]. The benefits of situated MASs are well
known, the most striking being flexibility, robustness and efficiency.

During the last two years, we developed an agent architecture that enables
advanced adaptive agent behavior. The architecture is a hierarchical free-flow
architecture which integrates the concept of situated commitments. Situated
commitments allow an agent to bias action selection towards actions in its com-
mitments.

Besides the theoretical work on agent architectures, we have been confronted
with application engineers who require software engineering support for develop-
ing concrete, real-world MASs, the applications include active networking, man-
ufacturing control and supply chain networks. These software engineers require
simple and comfortable modeling languages for functionally describing agent
behavior. A modeling language based on statecharts resolved this requirement.
However, a statechart specification of agent behavior is typically a static, rigid
model in that it leaves little room for adaptive and explorative behavior. As a
result, the agents in the applications performed behavior that was sometimes
unable to adapt to different environmental situations.

Free-flow architectures allow adaptive behavior, yet it is unrealistic to assume
that software engineers —starting from the analysis of the problem domain—
build a complex free-flow architecture for complex applications, where agents

106 Danny Weyns, Elke Steegmans, and Tom Holvoet

can perform many actions. For such applications, the architecture quickly be-
comes unmanageable. We aim to combine the best of both worlds, i.e. the best
of adaptive architectures and simple modeling languages. To that end, we re-
tain a flexible action selection mechanism, but complement its description with
statecharts. Here, we refrain from considering a statechart description of agent
behavior as a kind of sequence chart, but rather use statecharts to describe role
composition and to structure related actions within roles only.

This paper is structured as follows. In section 2 we introduce free-flow ar-
chitectures and give an overview of the statechart formalism we have developed.
We discuss problems we encountered when applying them in practice. Section 3,
the core of the paper, describes the combined adoption of free-flow architectures
and the statechart modeling language. We illustrate our explanation with an
example application. Section 4 discusses how the software engineering approach
proposed in this paper relates to existing agent-oriented methodologies. Finally,
in section 5 we conclude the paper.

2 Free-Flow Architectures and Statechart Models

In this section we start with a brief introduction of free-flow architectures. Then
we give a short overview of the statechart formalism we have developed for
modeling agent behavior. For both, we point out a number of problems we en-
countered when applying them in practice. Subsequently we outline an approach
to combine free-flow architectures with statechart models.

2.1 Free-Flow Architecture for Adaptive Behavior

Open MASs are characterized by dynamism and change: new agents may join the
system, others may leave, the environment may change, e.g. its topology or its
characteristics such as throughput and visibility. To cope with such dynamism
the agents must be able to adapt their behavior according to the changing cir-
cumstances. A well-known family of agent architectures for adaptive behavior
are free-flow architectures.

Before we introduce free-flow architectures, we first clarify our perspective
on adaptability in this paper. Here we look at adaptability as an agent’s ability
to deal with different kinds of situations in its environment in a flexible way. We
do not look at adaptability in the sense of learning, i.e. as an agent’s ability to
adjust its behavior in certain kinds of situations over time, according to good or
bad experiences of recent choices.

Free-flow architectures are first proposed by Rosenblatt and Payton in [29].
In his Ph.D thesis, T. Tyrrell [32] demonstrated that hierarchical free-flow ar-
chitectures are superior to flat decision structures, especially in complex and
dynamic environments. The results of Tyrrell’s work have been very influential,
for a recent discussion see [6].

An example of a free-flow architecture is depicted in Fig. 1.

The hierarchy is composed of activity nodes (in short nodes) which receive
information from internal and external stimuli in the form of activity. The nodes

Integrating Free-Flow Architectures with Role Models Based on Statecharts 107

System node

energy level
Legenda

0 O O increasing activity level
O

negative activity

5 not carry object
not see object . carry object
o> co>
o> o> *

Maintain

ToStation

disconnected

gradient @
fe

o[>

move N move E move S move W connect charge disconnect

Fig. 1. An example of a free-flow architecture.

feed their activity down through the hierarchy until the activity arrives at the
action nodes (i.e. the leaf nodes of the tree) where a winner-takes-it-all process
decides which action is selected. The main advantages of free-flow architectures
are:

— Stimuli can be added to the relevant nodes avoiding the “sensory bottle-
neck” problem. In a hierarchical decision structure, to make correct initial
decisions, the top level has to process most of the sensory information rele-
vant to the lower layers. A free-flow architecture does not “shut down” parts
of the decision structure when selecting an action.

— Decisions are made only at the level of the action nodes; as such all infor-

mation available to the agent is taken into account to select actions.

Since all information is processed in parallel the agent can take different

preferences into consideration simultaneously. E.g. consider an agent that

moves to a spotted object but is faced with a neighboring threat. If the
agent is only able to take into account one preference at a time it will move
straight to the spotted object or move away from the threat. With a free-flow
tree the agent avoids the threat while it keeps moving towards the desired
object, i.e. the agent likely moves around the threat towards a spotted object.

Fig. 1 depicts a free-flow tree of the action selection of a simple robot. This
robot lives in a grid world where it has to collect objects and bring them to a
destination. The robot is supplied with a battery that provides energy to work.
The robot has to maintain its battery, i.e. when the energy level of the battery
falls below a critical value the robot has to recharge the battery at a charge
station. The left part of the depicted tree represents the functionality for the
robot to search, collect and deliver objects. On the right, functionality to main-
tain the battery is depicted. The System node feeds its activity to the Work
node and the Maintain node. The Work node combines the received activity

108 Danny Weyns, Elke Steegmans, and Tom Holvoet

with the activity from the energy level stimulus. The “+” symbol indicates that
the received activity is summed up. The negative activity of the energy level
stimulus indicates that little energy remains for the robot. As such the resulting
activity in the Work node is almost zero. The Maintain node on the other hand
combines the activity of the System node with the positive activity of the energy
need stimulus, resulting in a strong positive activity. This activity is fed to the
ToStation and the Charging nodes. The ToStation node combines the received
activity with the activity level of the not at station stimulus (the “*” symbol
indicates they are multiplied). In a similar way the Charging node combines the
received activity with the activity level of the at station stimulus. This latter is
a binary stimulus, i.e. when the robot is at the charge station its value is posi-
tive (true), otherwise it is negative (false). The ToStation node feeds its positive
activity towards the action nodes it is connected with. Each moving direction
receives an amount of activity proportional to the value of the gradient stimulus
for that particular direction. gradient is a multi-directional stimulus. The value
of this stimulus (for each direction) is based on the sensed value of the gradient
field that is transmitted by the charge station. In a similar way, the Charging
node and the child nodes of the Work node (Explore, Collect and Deliver) feed
their activity to the action nodes they are connected with. Action nodes that
receive activity from different nodes combine that activity according to a specific
function. The action nodes for moving actions use a function f,, to calculate the
final activity level. A possibility definition of this function is the following:

AmoveD = max [(ANode + AstimulusD) * AfreeD]

Herein is A,,ovep the activity collected by a move action, D denotes one of
the four possible directions, i.e. D € {N, E,S,W}. Anode denotes the activity
received from a node. The move actions are connected to four nodes: Node €
{Ezplore,Collect,Deliver,ToStation}. With each node a particular stimulus is
associated. stimulus € {random direction, see object, see destination, gradient}
are all multi-directional stimuli with a corresponding value for each moving di-
rection. Finally, free is a multi-directional binary stimulus that indicates whether
the way to a particular direction is free for the robot to move to.

When all action nodes have collected their activity the node with the highest
activity level is selected for execution. In the example, the ToStation node is
clearly dominant over the other nodes connected to actions nodes. Currently
the East and West directions are blocked (see the free stimulus), leaving the
robot two possibilities to move towards the charge station: via North or via
South. According to the values of the guiding gradient field, the robot will move
northwards, see Fig. 1.

For the simple robot in the example, the free-flow tree is already fairly com-
plex. For a non-trivial agent however, the overall view of the tree quickly becomes
very cluttered. When a change is made in one part of such a tree it becomes
unclear how this affects the other parts. Although free-flow trees are at best
developed with a focus on a particular functionality of the agent, the archi-

Integrating Free-Flow Architectures with Role Models Based on Statecharts 109

tecture itself does not support any structure. From our experiences we learned
that it is unrealistic to assume that software engineers build a complex free-flow
architecture for complex applications, where agents can perform many actions.
For such applications, the architecture quickly becomes unmanageable, it is no
longer possible to have an overall view of the architecture.

2.2 Statechart Models

To develop non-trivial open MASs software engineers require suitable abstrac-
tions for describing and structuring agent behavior. The abstraction of a role
obviously is essential in this respect. Roles are quite general as core abstractions
for designing MASs, see e.g. Gaia [9], MESSAGE (8] and also [15][25]. Similar to
the definition in [35] we regard a role as an agent’s functionality in the context
of an organization. Roles provide the building blocks for the social organization
of a MAS. Agents are linked to other agents by the roles they play in the orga-
nization. The links can be explicit, e.g. a set of agents that pass objects along a
chain; or implicit, e.g. in an ant colony a dynamic balance exists between ants
that supply the colony with food and ants that maintain the nest.

A number of researchers have proposed state-based approaches to model
agent behavior. In SmartAgent [17], UML state machine models are used to
model JADE behaviors. [24] points to the strength of statecharts as a constraint
mechanism for agent interaction protocols. These and other related work use
statecharts to model agent behavior with a focus on inter-agent communication.
[18] and [2] are examples in which state machines are used to model reactive
behavior. In previous work, we proposed statecharts as a formalism to describe
agent behavior, see [19]. In that work we used a statechart formalism to model
the behavior of situated agents in terms of roles, with a focus on reusing roles in
different applications. Therefore, we extended the standard statecharts notation
with new concepts, such as pre-action and post-action. Fig. 2 depicts an example
of a role model for a scouting agent.

Although a statechart specification of agent behavior is simple to design and
to understand, it is typically a static, rigid model in that it leaves little room
for adaptive and explorative behavior. Practical experience with the statechart
formalism brought up a number of considerations:

— Action sequences are defined statically. The designer has to enumerate all
possible state transitions that can occur, or at least he has to distinguish
between discrete categories of environmental situations and corresponding
behavioral acts.

— The statechart formalism as developed is in principle only applicable for
deterministic agent systems. MASs however, are typically non-deterministic.
It is possible to integrate non-determinism in the modeling language, however
this would complicate the models significantly. As a result, the agents in
the applications performed behavior that was sometime unable to adapt to
different environmental situations.

110 Danny Weyns, Elke Steegmans, and Tom Holvoet

unborn born alive die
count
the
new@ observe) gota‘ node
node node |operation view
time

drop operation

time
walk drop

pheromone

done@
node process

finished

Fig. 2. An example of a statechart model.

filter
neighbors
on next
operation

calculate
the

number

of clones

observe

clone)
neighbors

— A final remark relates to the set-up of the statechart modeling language.
Although different concerns of the agent’s behavior can be modelled sepa-
rately (in terms of building blocks provided by the statechart formalism),
different concerns are mixed into one overall diagram. In the proposed stat-
echart formalism no distinction is made between perceptions and actions
in the environment, both are modeled as transitions. There is however a
fundamental difference between these two activities. For a non-trivial agent
merging the two in one model leads to poorly organized models. Another
experience relates to the integration of coordination. In [20] we developed
inter-agent coordination as a set of pre- and post-actions. The integration of
the coordination in the agent’s behavior model works well for rather simple
agents, however for more complex cases, the models quickly become less sur-
veyable. The underlying problem is that the integration of different concerns
should be described separately of the concern descriptions themselves.

Other controlled techniques for engineering agent behavior have been applied
such as Petri Nets, see e.g. [23][10][7], however the relationship between these
techniques and our statechart modeling approach is out of the scope of this

paper.

2.3 Combining the Best of Two Worlds

Agents must be able to adapt their behavior to deal with dynamism and change.
Free-flow architectures enable adaptive behavior. However developing free-flow
trees for non-trivial agents is a quasi-impossible task for software engineers. Ar-
chitectures quickly becomes too complex to be manageable. To tackle complexity

Integrating Free-Flow Architectures with Role Models Based on Statecharts 111

suitable abstractions are needed to describe and structure the behavior of the
agent. The role statechart modeling language offers a means to this. To combine
the best of the two:

1. We extended the free-flow architecture with the abstractions of a role and a
situated commitment.

2. We revised the statechart modeling language, i.e. we refrain from considering
a statechart description of agent behavior as a kind of sequence chart, but
use statecharts to describe role composition and to structure related actions
in roles only.

As such statecharts structure the agent behavior reflected in the structure of the
free-flow tree. Statecharts also provide an easy way to communicate description
of the agent behavior at a higher level of abstraction.

3 Bringing the Statechart Models
and Free-Flow Architectures Together

In this section we discuss the combined adoption of statecharts with the ex-
tended free-flow architecture. We illustrate our explanation with an example
application. We start with a brief introduction of the example application. Next
we describe the behavior of the agents with the statechart modeling language.
Then we illustrate how the statechart models facilitate the structuring of a free-
flow architecture.

3.1 Example Application

In a current research project with an industrial partner we investigate how the
paradigm of situated MASs can be applied to the control of logistic machines.
Traditional systems use one central controller that instructs the machines to per-
form jobs based on a calculated plan. The centralized approach lacks flexibility
to deal with the increasing demands of adaptability and scalability. By looking
at machines as agents of a situated MASs, we aim to convert the centralized
control system into a self-managing distributed system, improving adaptability
and scalability.

For the case in this paper we limit the discussion to the Automated Guided
Vehicle (AGV) transport system. The AGV transport system is typically one, yet
a crucial part, of an integral logistic warehouse system. AGV’s are unmanned
vehicles that transport goods from one place to another. AGV’s can supply
basic/raw materials to a production department, serve as a link between different
production lines or store goods between different processes and connect to the
dispatch area.

In a central controlled approach, the functionality of the individual AGV’s
is rather limited. Each AGV is provided with basic infrastructure to ensure
safety, and a typical AGV is able to perform the pick and drop functionality

112 Danny Weyns, Elke Steegmans, and Tom Holvoet

autonomously. The distribution of jobs, the routing through the warehouse, col-
lision avoidance at junctions etc. are all handled by the central control system.

In this section we look at a number of basic roles for an AGV to deal with
jobs autonomously. We take into account functionality for the AGV to find a
job, to handle a job, to park when no more work has to be done and finally to
ensure that the battery is charged in time.

3.2 AGYV’s Role Modeling

We distinguish two diagrams and one schema for role modeling. The role dia-
gram structures the agent roles and their interdependencies. The action diagrams
structure the related actions within the roles. Finally the commitment schema
defines the activation and deactivation conditions for a situated commitment.

Role Diagram. The roles and their interdependencies that describe the behav-
ior of an agent are described in a role diagram. Fig. 3 depicts the role diagram
of the AGV’s. A role diagram consists of a hierarchy of roles of which some are
related through situated commitments.

Working

Fig. 3. The role diagram of the AGV.

A role is represented by a white oval and the name of the role is written
in the oval. A role can consist of a number of sub-roles, and sub-roles of sub-
sub-roles etc. As such the role diagram is typically composed as a hierarchy of
roles. Roles at the bottom of the hierarchy are called basic roles. The first role
of the AGV is the Active role consisting of two sub-roles, Search, i.e. a basic
role, and Work. The Work role is further split up in two sub-roles, Collect and
Deliver, two basic roles. In the Search role the AGV searches for a new job.
Once the AGV finds a job it will Collect the good associated with the job and
subsequently Deliver the good at the requested destination. Besides the Active
role, the AGV has the Maintain role and the Park role. The AGV executes the

Integrating Free-Flow Architectures with Role Models Based on Statecharts 113

Park role when it has no more work to do. In this role the AGV simply moves
to the nearest parking place. The Maintain role ensures that the AGV keeps its
battery loaded. When the energy level crosses a critical value, the AGV finishes
its current job and moves towards the nearest charging station. To find its way
to the charging station an AGV uses an internal gradient map. At regular time
intervals all charging stations broadcast their current status. AGV’s use these
messages to keep their gradient maps up to date.

A situated commitment is represented by a rounded rectangle and the name
of the situated commitment is written in the rectangle. A situated commitment
is defined as a relationship between one role, i.e. the goal role, and a non-empty
set of other roles, i.e. the source roles of the agent. When a situated commit-
ment is activated the behavior of the agent tends to prefer the goal role of the
commitment over the source roles. Favoring the goal role results in more con-
sistent behavior of the agent towards the commitment. An agent can commit
to itself, e.g. when it has to fulfill a vital task. However, in a collaboration,
agents commit relatively to one another, typically through communication. [34]
discusses mutual commitments between collaborating agents in detail. In Fig. 3,
the Maintaining commitment ensures that the AGV maintains its energy level.
Since energy is vital for the AGV to function, all roles (except the Maintain role
of course) are connected as source roles to the Maintaining commitment. The
Activation commitment is activated when the AGV starts to work. This com-
mitment ensures that the AGV remains active once it decides to start working.
Working is an example of a commitment in a collaboration. The commitment is
activated once the AGV accepts a job. This commitment ensures that the AGV
acts consistently with the job in progress. As soon as the job is finished, the
Working commitment is deactivated.

Action Diagram. Action diagrams are defined for the basic roles. An action
diagram describes the structure of the related actions for a basic role. In Fig. 4
the action diagram of the Maintain role of the AGV is depicted.

Maintain

at
station

connect

not
at station

follow
gradient

energy level
<

to charge

energy level

charged charge

disconnect

Fig. 4. Action diagram of the Maintain role.

114 Danny Weyns, Elke Steegmans, and Tom Holvoet

A state is represented by a white circle in the diagram. In Fig. 4 three states
can be distinguished: ToStation, Charging and Charged. Besides regular states
there are two special states. The default state, represented by a black circle,
indicates the typical start state of the action sequence of the modelled role. On
the other hand, there is the final state, represented by a circle with an F written
in it, that indicates the typical end state of the action sequence of the modelled
role. The default and final state are connected to the corresponding regular state
via an arrow.

A transition connects two states with each other. A transition expresses a
change of state due to the execution of an action. An action, which is added
to a transition, models the functionality that must be performed by an agent
to achieve a new desired state from an old state. An action is represented by a
white rectangle in which the name of the action is written and which is attached
to a transition. To fulfill the Maintain role the AGV has to perform four differ-
ent actions: follow gradient to find the charge station, and connect, charge and
disconnect to charge the battery (see Fig. 4). The execution of an action may be
constrained by a precondition. Only when the condition is satisfied the attached
action can be executed. A precondition is represented by a gray rectangle in
which the precondition is written and which is attached to an action. In Fig. 4
the gray rectangle with not at station denotes that the AGV keeps following
the gradient until it reaches the charge station. At that time the precondition
at station becomes true and that enables the AGV to connect to the charge sta-
tion. As long as the condition energy level < charged level holds, the AGV keeps
charging. Finally when condition energy level = charged level becomes true, the
AGYV disconnects and that finishes the Maintain role.

Commitment Schema. For each situated commitment a commitment schema
is defined that describes the source roles and the goal role of the commitment
as well as its activation and deactivation conditions. Activation and deactiva-
tion conditions are boolean expressions based on the internal state of the agent,
perceived information or information derived from received messages. Activat-
ing situated commitments through communication enable situated agents to
setup explicit collaborations in which each participant plays a specific role. In
this paper we do not elaborate on this latter scenario, for a detailed discus-
sion we refer to [34]. Fig. 5 depicts the commitment schema for the situated
commitment Maintaining. This commitment schema expresses that when the
energy level of the AGV falls below the threshold to charge the situated commit-
ment Maintaining is activated. This will urge the AGV to execute the M aintain
role over the Active and Park roles. Once the battery is recharged the condition
energy level = charged becomes true and that deactivates the Maintaining
commitment.

3.3 Free-Flow Architecture

The free-flow tree describes the behavior of the agent in detail. The high-level
diagrams for roles and situated commitments described in the previous section

Integrating Free-Flow Architectures with Role Models Based on Statecharts 115

Situated commitment: Maintaining

Source roles: Active, Park
Goal role: Maintain
Activation condition: energy level < to charge

Deactivation condition: energy level = charged

Fig. 5. The commitment schema for the situated commitment Maintaining.

Maintaining
— Activation
- Acve
- \\]
e Worklng ~.
— o
(/ _/ N ~
/ Work ~_
| -
‘ | SearCh r‘ Collect o Park (Maintain

‘ ' (Deliver

Fig. 6. Skeleton structure of the free-flow tree according to the role diagram of Fig. 3.

serve as a basis for structuring the free-flow tree. The role structure as described
in the role diagram (see Fig. 3) is reflected in the skeleton structure of the
tree. Fig. 6 depicts the skeleton structure for the AGV example. Roles match
to trees in the free-flow tree, sub-roles to sub-trees etc. Situated commitments
on the other hand corresponds to connectors that connect the source roles of
the situated commitment with the goal role. When a situated commitment is
activated extra activity is injected in the goal role relative to the activity levels
of the source roles. Details are discussed shortly.

The action diagrams and commitment schemas enable to refine the skeleton
tree. Fig. 7 depicts the refined sub-tree for the Maintain role and the Maintaining
commitment.

States in the action diagram correspond to activity nodes in the tree. Pre-
conditions correspond to binary stimuli connected to the corresponding nodes.
Examples are the stimuli at station or connected (compare Fig. 4 and Fig. 7).
Each action in the action diagram of the basic role corresponds with an action
node in the tree. A number of other non-binary stimuli in the tree represent data
in the action diagram that determines the action selection. An example is the
stimulus gradient that guides the AGV to move towards the station.

The activation and deactivation conditions of the situated commitments,
described in the commitment schema, correspond to the conditions associated

116 Danny Weyns, Elke Steegmans, and Tom Holvoet

energy level <to charge
Active Maintaining

N
Maintain \

energy need \
at statiorx

Charging\

Park

energy level = charged

/ not at station

ToStation

|

‘ gradient

disconnected connected
follow gradient connect charge disconnect

Fig. 7. Refined Maintain role and Maintaining commitment.

with the corresponding connectors in the free-flow activity tree. Fig. 7 illustrates
this for the Maintaining commitment.

3.4 The Complete Free-Flow Tree

The complete free-flow contains all detailed information needed for action selec-
tion. Fig. 8 depicts the completed subtree of the Maintain role and the situated
commitment Maintaining. The abstract action node follow gradient in Fig. 7 is
refined towards the different moving actions of the AGV. The stimulus gradient
is split up in a multi-directional stimulus. Each segment represents the tendency
(based on the value of the gradient field) of the AGV to move in a particular
direction. Besides, a number of extra stimuli represent data that influences the
action selection. An example is the multi-directional stimulus free that denotes
in which direction the AGV is able to drive.

Stimuli needed to verify the activation and deactivation condition are con-
nected to the situated commitment. The M aintaining commitment is activated
when the value of the energy level crosses the threshold to charge. The com-
mitment then calculates the extra activity to inject in the Maintain role. For
the Maintaining commitment this extra activity is calculated as the sum (“4”
symbol) of the activity level of the Active and Park role, i.e. the activity levels
of the top nodes of these roles. As soon as the battery level reaches the thresh-
old value charged the Maintaining commitment is deactivated and it then no
longer injects extra activity in the Maintain role.

Integrating Free-Flow Architectures with Role Models Based on Statecharts 117

energy level Legenda

o O O increasing activity level

O negative activity

Maintain \

T@D N\

energy need \

at statiok

energy level <to charge
@) qy 9

O Active o

© Park Maintaining

energy level = charged

energy level /

/ not at station
(ToStation
]
=9

+

drive turn turn turn connect charge disconnect
right left back

Fig. 8. The complete Maintain role and Maintaining commitment.

4 Discussion

This paper introduces a practical approach to combine adaptiveness of agents
and MAS with rigid/controlled engineering. The approach enables engineers to
manage the complexity of designing free-flow architectures. The proposed role
abstraction allows to represent local agent activity. Roles however, not only
“chop up” the behavior of the agent into smaller logical parts, they also intro-
duce a means to enable explicit collaboration between situated agents, reified in
situated commitments. In the AGV case e.g., when an Searching AGV accepts
a job, it activates the Working commitment and that will bias the action selec-
tion of the AGV towards the Work role. As such, the AGV will act consistently
towards its commitment in the collaboration, i.e. its agreement to perform the
job in progress.

The focus of this paper is mainly on the integration of free-flow architectures
with role modeling based on statecharts. In ongoing work [30] we described a
design process for adaptive agent behavior as part of a multi-agent oriented
methodology. This process integrates the engineering approach for behavior de-
sign we have proposed in this paper and rigorously describes the subsequent
design steps. At the highest level, roles and their interdependencies are caught
into a high level model described making use of the statechart modeling lan-
guage. This model is used as a basis for designing a skeleton of the free-flow

118 Danny Weyns, Elke Steegmans, and Tom Holvoet

architecture. Next the skeleton is refined such that it contains all details needed
for action selection. Finally, the free-flow tree is mapped onto a class diagram
that serves as a basis for the implementation of the agent’s behavior.

Several agent-oriented methodologies acknowledge the abstraction of a role
as a core abstraction for designing multi-agent systems, examples are Gaia [36],
MESSAGE [8] or SODA [26]. In these methodologies the design process is de-
scribed independent of a particular multi-agent architecture, for a recent dis-
cussion see Chapter 4 of [21]. When it comes to building a concrete multi-agent
application however, the gap between the high level design models and the cho-
sen multi-agent architecture that is used to implement the multi-agent system
has to be filled. We aim to bridge this gap enabling designers to build concrete
multi-agent systems applications. In particular, the design process described in
[30] that builds upon the software engineering approach for behavior design pro-
posed in this paper, enables a designer to incrementally refine the model of the
agent behavior from a high level role model toward a concrete agent architecture
for adaptive behavior, in casu a free-flow architecture.

5 Conclusion

Engineering software for non-trivial open multi-agent systems is a challenging
task. In this paper we proposed a software engineering approach that combines
free-flow architectures for adaptive behavior with a statechart modeling lan-
guage that offers suitable abstractions. Free-flow trees are extended with the
abstraction of a role and a situated commitment. The earlier developed stat-
echart formalism is revised and adapted from a rigid description of action se-
quences towards a description of the role composition of the agent behavior and
a structuring of the related actions within the roles. In the paper we illustrated
the approach for a case study on controlling a collection of automated guided
vehicles.

Currently we are working on a design process for adaptive agent behavior
that integrates the engineering approach for behavior design we have proposed
in this paper. In future work we intend to extend the design process towards
other concerns that need to be engineered in situated MASs such as agent com-
munication and coordination, and the design of the environment of the MAS.

Acknowledgement

The research results presented in this paper have been obtained in the Con-
certed Research Action on Agents for Coordination and Control - AgCo2 project
(K.U.Leuven) and in the Egemin Modular Controls Concept - EMC2 project
(Flemish Institute for the Advancement of Scientific-technological Research in
the Industry - IWT).

Integrating Free-Flow Architectures with Role Models Based on Statecharts 119

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Babaoglu, O., Meling, H., Montresoret, H.: Anthill: A Framework for the Devel-

opment of Agent-Based Peer-to-Peer Systems. International Conference on Dis-
tributed Computing Systems, Vienna, Austria (2002)

Balch, T., Arkin, R.C.: Communication in Reactive Multiagent Robotic Systems.
Autonomous Robots 1(1) (1995)

Bonabeau, E., Henaux, F., Guerin, S., Snyers, D., Kuntz, P., Theraulaz, G.: Rout-
ing in Telecommunications Networks with Ant-Like Agents. IATA (1998)

. Brooks, R.: Intelligence without representation. Artificial Intelligence Journal,

Vol. 47 (1991)

Brooks, R.: Intelligence Without Reason, MIT AI Lab Memo No. 1293 (1991)
Bryson, J.: Intelligence by Design, Principles of Modularity and Coordination for
Engineering Complex Adaptive Agents. PhD Dissertation, MIT (2001)

. Cabac, L., Moldt, D.: Formal Semantics for AUML Agent Interaction Protocol

Diagrams. 5th International Workshop on Agent-Oriented Software Engineering,
AOSE at AAMAS, New York (2004)

Caire, G., Leal, F., Chainho, P., et al.: Agent Oriented Analysis Using MES-
SAGE/UML. Agent-Oriented Software-Engineering I1, Lecture Notes in Computer
Science, Vol. 2222 Berlin Heidelberg New York, Springer (2001)

Cernuzzi, L., Juanand, T., Sterling, L., Zambonelli, F.: The Gaia Methodology:
Basic Concepts and Extensions. Methodologies and Software Engineering for Agent
Systems, Kluwer (2004)

Cost, R.S., Chen, Y., Finin, T., Labrou, Y., Peng, Y.: Modeling agent conversations
with colored petri nets. Workshop on Specifying and Implementing Conversation
Policies, Seattle, Washington (1999)

Deneubourg, J.L., Aron, A., Goss, S., Pasteels, J.M., Duerinck, G.: Random Be-
havior, Amplification Processes and Number of Participants: How they Contribute
to the Foraging Properties of Ants. Physics 22(D) (1986)

Dorigo, M., Gambardella, I..M.: Ant Colony System: A Cooperative Learning Ap-
proach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary
Computation 1(1) (1997)

Drogoul, A., Ferber, J.: Multi-Agent Simulation as a Tool for Modeling Societies:
Application to Social Differentiation in Ant Colonies. Decentralized A.I. 4, Elsevier
North-Holland (1992)

Ferber, J.: An Introduction to Distributed Artificial Intelligence. Addison-Wesley
(1999)

Ferber, J., Gutknecht, O., Michel, F.: From Agents to Organizations: An Orga-
nizational View on Multi-Agent Systems. 3th International Workshop on Agent
Oriented Software Engineering, AOSE, Melbourne, Australia (2003)

Genesereth, M.R., Nilsson, N.: Logical Foundations of Artificial Intelligence, Mor-
gan Kaufmanns (1997)

Griss, M.L., Fonseca, S., Cowan, D., Kessler, R.: Using UML State Machine Models
for More Precise and Flexible JADE Agent Behaviors. 2th International Workshop
on Agent Oriented Software Engineering, AOSE, Bologna, Italy (2002)

Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Science of Com-
puter Programming 8(3) (1987)

Holvoet, T., Steegmans, E.: Application-Specific Reuse of Agent Roles. Software
Engineering for Large-Scale Multi-Agent Systems, Lecture Notes in Computer Sci-
ence, Vol. 2603, Berlin Heidelberg New York, Springer (2003)

120

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Danny Weyns, Elke Steegmans, and Tom Holvoet

Janssens, N., Steegmans, E., Holvoet, T., Verbaeten, P.: An Agent Design Method
Promoting Separation Between Computation and Coordination. Symposium on
Applied Computing SAC, Nicosia, Cyprus (2004)

Luck, M., Ashri, R., D’Inverno, M.: Agent-Based Software Development. Artech
House (2004)

Maes, P.: Modeling Adaptive Autonomous Agents. Artificial Life Journal 1(1-2)
(1994)

Ferber, J., Magnin, L.: Conception de systemes multi-agents par composants mod-
ulaires et reseaux de Petri. Actes des journees du PRC-TIA, Montpellier (1994)
Odell, J., Parunak, H.V.D., Bauer, B.: Extending UML for Agents. AOIS Workshop
at AAAI, www.auml.org (2000)

Odell, J., Parunak, H.V.D., Fleisher, M.: The Role of Roles. Journal of Object
Technology 2(1) (2003) http://www.jot.fm/

Omicini, A.: SODA: Societies and Infrastructures in the Analysis and Design
of Agent-Based Systems. Agent-Oriented Software Engineering, Lecture Notes in
Computer Science, Vol. 1957, Berlin Heodelberg New York, Springer (2001)
Parunak, H.V.D.: Go to the Ant: Engineering Principles from Natural Agent Sys-
tems. Annals of Operations Research 75 (1997)

Parunak, H.V.D.: The AARIA Agent Architecture: From Manufacturing Require-
ments to Agent-Based System Design. Integrated Computer-Aided Engineering
8(1) (2001)

Rosenblatt, K., Payton, D.: A fine grained alternative to the subsumbtion architec-
ture for mobile robot control. International Joint Conference on Neural Networks,
IEEE (1989)

Steegmans, E., Weyns, D.; Holvoet, T., Berbers, Y.: Designing Roles for Situ-
ated Agents. 5th International Workshop on Agent-Oriented Software Engineering,
AOSE at AAMAS, New York (2004)

Steels, L.: Cooperation between distributed agents through self-organization. Pro-
ceedings of the First European Workshop on Modeling Autonomous Agents in a
Multi-Agent World, Elsevier Science Publishers, Holland (1990)

Tyrrell, T.: Computational Mechanisms for Action Selection. Ph.D Thesis, Uni-
versity of Edinburgh (1993)

Weyns, D., Holvoet, T.: A Formal Model for Situated Multi-agent Systems. Formal
Approaches for Multi-Agent Systems, Special Issue of Fundamenta Informaticae,
63(2—-3) (2004)

Weyns, D., Steegmans, E., Holvoet, T.: Protocol Based Communication for Sit-
uated Multi-agent Systems. 3th International Joint Conference on Autonomous
Agents and Multi-Agent Systems, AAMAS, New York (2004)

Wooldridge, M., Jennings, N., Kinny, D.: The Gaia Methodology for Agent-
Oriented Analysis and Design. Autonomous Agents and Multi-Agent Systems 3(3)
(2000)

Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing Multiagent Systems:
The Gaia Methodology. ACM Transactions on Software Engineering and Method-
ology 12(3) (2003)

Aspectizing Multi-agent Systems:
From Architecture to Implementation

Alessandro Garcia, Uira Kulesza, and Carlos Lucena

PUC-Rio, Computer Science Department, LES, SoC+Agents Group,
Rua Marques de Sao Vicente, 225 - 22453-900, Rio de Janeiro, RJ, Brazil
{afgarcia,uira, lucena}l@inf.puc-rio.br
http://www.teccomm.les.inf.puc-rio.br/socagents

Abstract. Agent architectures have to cope with a number of internal properties
(concerns), such as autonomy, learning, and mobility. As the agent complexity
increases, these agent properties crosscut each other and the agent’s basic func-
tionality. In addition, multi-agent systems encompass multiple agent types with
heterogeneous architectures. Each of these agent types has different properties,
which need to be composed in different ways. In this context, the separation and
the flexible composition of agent concerns are crucial for the construction of
heterogeneous agent architectures. Moreover the separation of agent concerns
needs to be guaranteed throughout the different development phases, especially
from the architectural to the implementation phase. Existing approaches do not
provide appropriate support for the modularization of agent properties at the ar-
chitectural stage, and do not promote a smooth transition to the system imple-
mentation. This paper presents an aspect-oriented method that allows for a bet-
ter separation of concerns, supporting the systematic aspectization of agent
properties through the architectural definition, detailed design and implementa-
tion. A multi-agent system for paper reviewing management is assumed as a
case study through this paper to show the applicability of our proposal.

1 Introduction

Multi-agent systems (MASs) are composed of heterogeneous agent types with distinct
agent properties (concerns), such as adaptation, mobility, collaboration, and learning.
The architecture of each agent type in the system incorporates different concerns to be
composed in different ways [4, 12]. None is more serious than the difficulty to modu-
larize and compose multiple agent properties [4, 12], requiring a flexible architectural
approach. These agent properties are typically overlapping and crosscut the agent’s
basic functionality [4, 12, 14]. The basic functionalities of agents already are quite
complicated, and so agent properties should be designed separately from the agents’
basic behaviors [14].

The degrees to which quality requirements (e.g. reusability and maintainability) are
met on a MAS are largely dependent on its software architecture [1]. Hence, if an
agent architecture that includes suitable support for the separate handling of its multi-
ple properties is chosen from the outset, it is more likely that distinct quality attributes
will be achieved throughout the development of multi-agent systems. In addition, the
transition of the architectural specification to the detailed design and implementation
should be straightforward.

R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 121-143, 2005.
© Springer-Verlag Berlin Heidelberg 2005

122 Alessandro Garcia, Uira Kulesza, and Carlos Lucena

However, little work has been reported so far on the definition of a development
method to structure agent concerns in software systems starting at preliminary devel-
opment stages. The design of multiple agent concerns with existing architectural ap-
proaches [19, 21, 26] usually increases, rather than decreases, their complexity and,
consequently, it makes more difficult the task of building high-quality MASs. The
perceived low quality of existing multi-agent systems is often attributed to a poor
architectural design related to the agent properties [5, 11, 12, 14]. Moreover, software
developers usually postpone the modularization of agent properties to the implemen-
tation stage. The agent properties are in general introduced into the software system in
an ad hoc way [11, 12, 26], leading to agent architectures that are difficult to under-
stand, maintain and reuse.

In this context, this paper presents an aspect-oriented method to support the separa-
tion of agent-specific concerns from the architecture to the implementation stages.
The contributions are threefold: (i) a set of architectural guidelines to aspectize agent
concerns on the construction of heterogeneous agent architectures - these architectural
steps prescribe solutions independent of programming languages or MAS implemen-
tation frameworks [15], (ii) a set of guidelines to enable the detailed design and im-
plementation of aspect-oriented agent architectures, and (iii) a case study of the pro-
posed approach involving a MAS for paper reviewing management.

The basic idea of our proposal is the aspectization of agent architectures, using as-
pect-oriented abstractions to modularize agent-specific concerns at the architectural
level. Aspect-oriented software development [9, 10] is an evolving paradigm to
modularize concerns, which existing paradigms are not able to capture explicitly. It
encourages modular descriptions of complex software by providing support for
cleanly separating the basic system functionality from its crosscutting concerns. As-
pect is the abstraction used to modularize the crosscutting concerns. However, aspect-
oriented approaches have been rarely applied to the MAS domain [6, 12].

The remainder of this paper is organized as follows. Section 2 presents the essen-
tial concerns in the development of software agents, and explains why many agent
concerns are crosscutting. Section 3 surveys and analyses existing architectural ap-
proaches that aim to support the separation of agent-specific concerns. Section 4 pres-
ents the notion of aspect-oriented agent architectures and our aspect-oriented method.
Section 5 applies the proposed approach to an example. Section 6 discusses the rela-
tive advantages and disadvantages of applying the proposed approach. Section 7 dis-
cusses related work. Section 8 presents some concluding remarks.

2 Concerns in Agent Architectures

This section presents the essential concerns in the development of software agents.
The main concerns are presented in italic throughout the section. A concern is some
part of a MAS that we want to treat as a single conceptual unit [29]. Agent concerns
are modularized throughout software development using different abstractions pro-
vided by languages, methods and tools.

A MAS is composed of a set of entities. These entities comprise different types of
agents and objects that are immersed in environments [30]. Both objects and agents
provide services to their clients. However, objects are non-autonomous entities that
represent passive system elements. An agent is an interactive, adaptive, autonomous

Aspectizing Multi-agent Systems: From Architecture to Implementation 123

entity that acts on the environment and manipulate objects [30-33]. As a consequence,
the internal architecture of a software agent includes special concerns, which are clas-
sified in two categories: agenthood concerns (Section 2.1) and additional concerns
(Section 2.2).

2.1 Agenthood Concerns

Agenthood concerns are the features incorporated by all the agent architectures inde-
pendently from the agent type. Agenthood usually consists of the basic agent con-
cerns — the agent services and the knowledge - and some behavioral properties. Al-
though there is no widely accepted definition of agenthood, autonomy, interaction,
and adaptation are considered agenthood properties of software agents, while collabo-

ration, roles, learning, and mobility are neither necessary nor sufficient conditions for
agenthood [30-33].

Knowledge. There are different proposed models for knowledge structuring [34, 35],
but the knowledge elements are often expressed by beliefs, goals, actions, and plans
[26, 34, 35]. This work focuses on such a knowledge-structuring model because many
projects consider the belief-desire-intention (BDI) model [34] to be the base line for
describing the agent knowledge [19, 21, 26]. The agent’s beliefs are knowledge ele-
ments that describe information about the agent itself, the environment, and its part-
ners. A goal may be realized through different plans. A plan describes a strategy to
achieve an internal goal of the agent, and the selection of plans is based on agent
beliefs. Actions and plans are used to implement the agent services.

Interaction. The interaction concern is the agent property that implements the com-
munication with the external environment. The interaction behavior basically consists
of receiving messages and sending messages to other agents through sensors and
effectors. Since an message is received, it is unmarshaled and stored in an agent in-
box. When an agent is performing actions and plans, it needs to send messages to the
other agents. A message is sent from a simple action or from a plan. The sent mes-
sages are marshaled and stored in an outbox. Agent messages are structured according
an agent communication language (ACL) [36]. Since different agents can use differ-
ent ACLs, messages are translated to an internal message style used by the agent. The
interaction protocol can also implement a sensory behavior, which consists of observ-
ing events in the environment objects.

Adaptation. The adaptation concern is the agent property that modifies the agent
according to external and internal events [37, 38]. There are two kinds of adaptation:
knowledge adaptation and behavior adaptation. They follow the same basic protocol,
which consists of observing relevant environmental or internal events, gathering the
information needed, selecting and invoking the associated adapters [37]. However,
knowledge adaptation results in the modification of some piece of the agent knowl-
edge. The behavior adaptation results in either the plan cancellation or the selection of
new plans which should be executed next. Sophisticated adapters include reasoning
techniques [37, 38] and planners [37, 38].

Autonomy. Autonomy usually means that an agent has control over its own actions
and can act independently of others [31, 39, 40]. To be autonomous, the agent must

124 Alessandro Garcia, Uira Kulesza, and Carlos Lucena

[30, 31, 39, 40]: (i) create its own goals on the basis of internal and external events,
(ii) make decisions on goal instantiations, (iii) have its own control threads (execution
autonomy), and (iv) create proactive goals without direct external intervention (proac-
tiveness). The achievement of proactive goals depends on their degree of autonomy.
The degree of autonomy increases or decreases according to successes and failures of
agent actions in the past. These are the dimensions of agent autonomy commonly
found on the literature [30, 31, 39, 40].

2.2 Additional Concerns

In addition to the agenthood concerns, the agent developer may have to face addi-
tional concerns. The agent may have move from an environment to another, gain new
knowledge to improve its performance, and collaborate with other agents.

Mobility. The mobility concern encompasses the behavior to support the agent travels
towards remote environments. During the execution of its plans, a mobile agent may
have to move from one environment in a network to another in order to achieve its
goals. Many facets of the mobility strategy need to be considered [14], including the
specification of the mobile elements, the descriptions of when the agent should move,
the departure to remote environments, the refurn to the home environment, and the
control of its itinerary. In this work, we have focused on weak mobility in which only
program code and instance data are moved [16]. In fact, most mobility frameworks
support weak mobility [14, 16].

Learning. The learning property involves the agent behavior responsible for refining
or gaining knowledge. Cognitive agents learn based on experience as a result of their
own actions, their mistakes, the successive interactions with the external environment
and the collaborations with other agents [38, 41]. Agents employ different learning
techniques, but the general learning protocol is the following [38, 41]: (i) an event is
detected as relevant, (ii) the event is caught and the information is gathered for the
learning purpose, (iii) the learning algorithm processes the gathered information, (iv)
the information is stored and alternatively leads to new conclusions, (v) whether a
new conclusion is achieved, the knowledge agent is adapted.

Collaboration. Collaboration is viewed as a more sophisticated form of interaction,
since it involves collaboration protocols and roles [5]. Collaboration protocols define
the ways software agents can interact with other agents in a multi-agent organization.
Agents play different roles in pursuing their individual goals and work together with
other agents in multiple contexts [5]. The role structure is similar to the agent struc-
ture. As an agent, a role has beliefs, goals, actions and plans for carrying out the col-
laborations with other agents. It may have specific behaviors for interacting with other
agents, specific decision algorithms, and specific adaptation strategies. It may also
have specialized behaviors related to the additional properties. However, a role cannot
exist without an agent.

2.3 Crosscutting Agent Concerns

Several authors have identified that most of the agent properties are often crosscut-
ting, such as mobility [14,54], interaction [4,5], learning [28,53], autonomy [19,44],

Aspectizing Multi-agent Systems: From Architecture to Implementation 125

and collaboration [14,27]. Some empirical studies confirm their findings [4,7,12].
Fig. 1 shows a partial representation of a multi-agent system [5], which will be used
in Section 5 to show the applicability of our proposal. Each set of classes, surrounded
by a gray rectangle, has the main purpose of modularizing a specific agent concern,
namely interaction, environment, basic concerns, learning, and collaboration.

PersistentCV DSinterface Environment ey
Observable
0 getu) Agenda e Cc

ddPublicati - @ Strate

:ddA:l;:;?)lon(\ Hhouic voia agapubiication(...) (removel.C() leamningRate .| ,,Zuefny

addConference() B e notiyL G0 J

==
‘ T T v |
! I } Observer

pattern [)
JADEAgent Effector Sensor TD-Learning LMS

getName() send| receive| L {E() L ten()

) — e, gerD) GelLR()

beforeMove() get'l:ewarg()

. setRewar
AN . Learning ®
£\ Interaction
1
T
I T
T +
Role LY Agent RevisionProposal Plan

S collaboratingAgents goals paper goal .

= collaborationProtocol plans deadlines agent Basic

© getName() SEIEEE currentPaperinterest o

o addAgent() effectors proposalEvaluation clone() Concerns

o removeAgent() addAgent() isAccepted() execute ()

© sendMsg()

3 receiveMsg() getPaperinterest()

8 jon() ; 4
ﬁ% JAN i - \
Chair Reviewer CVUpdatePlan JudgementPlan Judgement

UserAgent 9 9
N " > ReceptionPlan
papers chairName —— learningC learningC

learningComponents papersToReview publications § addLC() addLC() learningComponents

ubmissionDeadline learningC o removeLC() removeL.C() addLC()

reviewDeadline setChair() learningComponents notifyL.C() notifyL.C() removeL.C()
addLC() addLC() P " " - execute () notifyL.C()

removeLC() ey agng(p)aruApubhc Result judgeProposal(...) { | judgep > e

a 2
notifyl C() notifyL.C() removeLC{ lc.processInformationbd emitJu ())e SE9050
posal() return) nofiyic) | , . //)}/)
Legend; — learning-specific members — interaction-specific members
A998¢/— methods with some learning code — methods with some interaction code
[learning-specific classes [interaction-specific classes

Fig. 1. Crosscutting Agent Concerns

However, note that, for example, the learning concern crosscuts classes implement-
ing other agent concerns; it has a huge impact on the basic agent structure and the
collaboration design. Although part of the learning concern is localized in the classes
of the Strategy and Observer patterns, learning-specific code replicates and spreads
across several class hierarchies of a software agent. Several participants have to im-
plement the observation mechanism and the gathering information and, as a conse-
quence, have learning code in them. Some classes (e.g. RevisionProposal class) have
learning-specific knowledge. Adding or removing the learning code from classes
requires invasive changes in those classes. Note that even if we try to refactor the
object-oriented solution presented in Fig. 1, we cannot find a more modular solution.
This problem happens because learning is a crosscutting concern independently of the
object-oriented decomposition used [53]. Fig. 1 also illustrates similar problems for
the interaction concern, which is usually crosscutting.

126 Alessandro Garcia, Uira Kulesza, and Carlos Lucena

3 Existing Architectural Approaches

There are some architectural approaches [19, 21, 26] to promote the separation of
agenthood and additional concerns. This section provides a comparison and evalua-
tion of these architectures as well as the identification of the primary limitations of
applying them to the separation and integration of crosscutting agent concerns. They
rest on traditional architectural patterns, such as the Layers pattern [26], Reflection
pattern [19], and the Mediator pattern [21].

Layered Agent Architectures. Kendall et al [26] propose the Layered Agent archi-
tectural pattern with multiple layers for the separate representation of the agent con-
cerns (Fig 2a). The interaction concern is modularized in two layers: the translation
layer and the sensory layer. The layered architecture establishes a composition style in
which all of the interactions feature two-way information flow and only subjacent
layers communicate with each other. However, this composition style is very restric-
tive since agent properties can interact with each other in multiple ways (Section 2.3).

For example, as the agent complexity increases, the learning concern cuts across
the different agent layers, such as knowledge and collaboration (Fig 2a). Moreover
the evolution of this design approach is cumbersome since removing any of these
layers is not a trivial matter; it requires the reconfiguration of the adjacent layers. This
layered agent architecture promotes some degree of separation only at the architecture
level. When the architectural components — the layers — are decomposed using design
patterns, as proposed by the Kendall’s approach [26], the architectural separation of
agent concerns is degenerated at the detailed design and implementation levels. Pre-
vious work has highlighted similar shortcomings of layered architectures [23].

Legend: Iearn_ing
“-= crosscuts collaboration/” ™\ AgentB meta-object
meta-object
Agent A .
9 adaptation afaptation
meta-object méta-object
autonomy autonomy
meta-object meta-object
interaction interaction
Meta-Level meta-object meta-object
MOP
Base Level
_______ - message message JE—
{ interception interception i
: O O
object object
r (intrinsic (intrinsic
knowledge) knowledge)
(a) Learning: Cross- (b) Learning: Crosscutting Meta-Objects

cutting Layers

Fig. 2. Layered vs. Reflective Agent Architectures

Reflective Agent Architectures. Amandi [19] proposes an architectural approach
based on the Reflection architectural pattern [1], called Brainstorm. Reflective soft-
ware architectures are organized in two levels: the base level that contains the objects,
and the meta-level composed of meta-objects. A MOP (meta-object protocol) imple-
ments the interface between the base-level and the meta-level. The MOP is responsi-

Aspectizing Multi-agent Systems: From Architecture to Implementation 127

ble for redirecting the control flow at the base-level to the meta-level in certain execu-
tion points of base-level objects. Brainstorm explores meta-objects as abstractions to
support the modularization of agent concerns. Each agent concern is modularized in
specific meta-objects and associated with based-level objects, which implement the
agent’s basic concerns (Fig 2b).

Reflective agent architectures improve the separation of agent concerns since meta-
objects localize them. However, this architecture introduces some drawbacks. First of
all, the composition of multiple meta-objects is not trivial. Meta-objects are objects
and their composition rests on inheritance and delegation mechanisms, leading in turn
to the problem of crosscutting concerns (Section 2.3). Fig 2b illustrates this problem
for the learning concern. Second, a meta-object is often associated with one object. It
is very restrictive since several agent properties (meta-objects) can affect directly the
basic agent concerns (objects).

Mediator-Based Agent Architectures. The use of mediators is an architectural ap-
proach to address the composition of agent concerns that interact in multiple ways.
Composition patterns, such as the Mediator pattern [20] and the Composite pattern
[20], are mediator-oriented solutions. They provide means of allowing integration of
agent properties using a central component, the mediator. The Mediator pattern, for
instance, defines a mediator component that encapsulates how a set of components,
the colleagues, interact with each other. This solution promotes loose coupling by
keeping components from referring to each other explicitly, and it lets the agent de-
velopers vary their interaction independently. The Skeleton Agent framework [21]
realizes a mediator-based architecture by implementing the Composite pattern. The
use of a mediator-based architecture leads to the following problems [4, 6, 7]: (i) the
encapsulation of the agent’s basic functionality is lost, (ii) agent concerns are scat-
tered and tangled up with each other in the mediator-based design, and (iii) the con-
struction of heterogeneous agent types is difficult as a result of (ii).

4 Aspectizing Software Agents:
From Architecture to Implementation

This section overviews aspect-oriented agent architectures [5], which are the founda-
tion of our approach (Section 4.1). This section also presents the proposed guidelines
to aspectize MASs. The guidelines are grouped in terms of the different development
phases, namely architecture definition (Section 4.2), detailed design (Section 4.3),
and implementation (Section 4.4). The guidelines will be applied to an example (Sec-
tion 5) in order to show the use of our method in practice.

4.1 Aspect-Oriented Agent Architectures

In this paper, the architecture modeling is based on the aSideML language [2], which
is a UML extension for representing aspects at different levels of abstraction. Aspects
are modular units to encapsulate crosscutting concerns [9, 10]; aspectual components
(or architectural aspects) are aspects [9, 10] at the architectural level. The aSideML
language provides two distinct modes for presenting an aspect: (i) condensed or archi-
tectural view, and (ii) full view or detailed design view (see Section 4.3). The archi-

128 Alessandro Garcia, Uira Kulesza, and Carlos Lucena

tectural view of an aspect suppresses all information about its inner elements. Archi-
tectural aspects are UML components represented as diamonds. Each of the aspectual
components is related to more than one architectural component, representing their
crosscutting nature.

linformation
Gathering
™M LT TR Legend:
essage .- ST)
Reception .-~ S Tee.,[Services INREREEEE &7 aspectual component
O/ TSl O 2] component
o (e

crosscutting interface
normal interface
Kernel

IMessage <“-- crosscuts
Sending

Fig. 3. Aspect-Oriented Architecture

Fig. 3 illustrates some architectural components and their interfaces. Each interface
is displayed as a small circle with the interface name placed next to the circle. Each
architectural component has one or more interfaces. The interfaces are categorized in
two groups: (i) normal interfaces, and (ii) crosscutting interfaces. A crosscutting
interface is different from a normal interface. The latter only provides services to
other components. Crosscutting interfaces specify when and how an architectural
aspect affects other architectural components. The purpose of crosscutting interfaces
is to modularize parts of a concern which usually crosscut other concerns in tradi-
tional kinds of decomposition, such as object-orientation (Section 2.3). For example,
Fig. 3 shows the lInformation Gathering interface in the Learning component that
modularizes the event observation and information gathering, which are issues that
usually crosscut the other concerns (Section 2.3). An aspectual component conforms
to a set of crosscutting interfaces. Normal interfaces are colored in white and
crosscutting ones in gray.

An aspect-oriented agent architecture provides components for aspectizing cross-
cutting agent concerns (Section 2.3). Each agenthood and additional property is
modularized as an individual aspect [9, 10]. The aspect-oriented architecture is com-
posed of two kinds of architectural components: (i) the Kernel component that modu-
larizes the basic agent concerns, and (ii) aspectual components (or architectural as-
pects) that separate the crosscutting agent concerns from each other and from the
Kernel component. Fig. 3 shows a partial representation of an aspect-oriented agent
architecture; it illustrates a Kernel component, two aspectual components, and cross-
cutting relationships.

The Kernel component implements the services provided for the agent’s clients.
The Kernel component realizes an interface that makes available services imple-
mented by the agent. This component is also responsible for modularizing the knowl-
edge elements, such as actions, plans, goals, and beliefs. An aspectual component can
realize more than one crosscutting interface since it can crosscut multiple agent com-
ponents in different ways. The interface of an architectural aspect can crosscut the
Kernel component and other architectural aspects. An aspect interface crosscuts either
internal elements of an agent component or elements of other interfaces. The first case

Aspectizing Multi-agent Systems: From Architecture to Implementation 129

means that the architectural aspect affects the internal structure or dynamic behavior
of the agent component. The second case means that the aspect affects directly an
agent architectural aspect.

4.2 Steps for the Architectural Stage

This section presents a set of guidelines to assist software engineers in the design of
aspect-oriented agent architectures. The guidelines assist in the configuration of the
architectural components and their composition through the specification of normal
and crosscutting interfaces in a stepwise fashion. The definition of a crosscutting
interface involves the description of the architectural components or interfaces af-
fected by that crosscutting interface. This process determines the relationships be-
tween the agent’s architectural components, abstracting the internal intricacies of each
component.

The steps and substeps should be followed for the architectural definition of each
of the system’s agents. The following subsections walk through the guidelines to
generate the aspect-oriented agent architecture. The steps A1-A4, D1-D4 are manda-
tory for all agent types since they represent guidelines for dealing with the agenthood
concerns. The remaining steps are optional because they comprise the additional con-
cerns.

Step Al. Define the Kernel component.

a) Define the agent’s basic interfaces. Each agent can have one or more normal inter-
faces which make the agent services available to the environment.

b) Define the normal interface for the agent knowledge maintenance.

Step A2. Define the Interaction aspectual component.

a) Define the crosscutting interfaces for the sensory behavior.
b) Define the crosscutting interfaces for message reception.
c) Define the crosscutting interfaces for message sending.

Step A3. Define the Adaptation aspectual component.
a) Define the crosscutting interfaces for knowledge adaptation.
b) Define the crosscutting interfaces for behavior adaptation.

Step A4. Define the Autonomy aspectual component.

a) Define the crosscutting interface for addressing the thread management. This in-
terface specifies the policies for starting and finalizing agent threads. This inter-
face may be not necessary in the cases where the thread is attached to the agent by
the enclosing system and not by the application.

b) Define the crosscutting interface for goal creation.

c) Define the crosscutting interfaces for controlling the autonomy degree.

d) Define the crosscutting interfaces for decision making. Reactive agents [38] only
need to decide according to external events. Proactive agents [38] make decisions
on the basis of both internal and external stimulus.

Step AS. Define the Mobility aspectual component.

a) Define the crosscutting interfaces for specifying the elements to be moved to-
gether with the agent.

b) Define the crosscutting interfaces for the agent departure and the agent return.

130 Alessandro Garcia, Uira Kulesza, and Carlos Lucena

Step A6. Define the Learning aspectual component.

a) Define the crosscutting interfaces for observing the agent’s internal events and
gathering the contextual information.

b) Define the crosscutting interfaces for describing the learning-specific knowledge.

Step A7. Define the Collaboration aspectual component.
a) Define the crosscutting interfaces for enforcing the collaboration protocols.
b) For each role, define a Role aspectual component, and:
a. define the role architecture by starting from Step Al.
b. define the crosscutting interface for role binding.
c. define the crosscutting interface for describing the role-specific knowledge.
d. associate the Role component with the respective protocol interfaces (A7-a).

4.3 Steps for the Detailed Design Stage

Each step in this phase is associated with an architectural step (Section 4.2), refining
an architectural component previously defined. A design step has two basic proce-
dures: (i) the refinement of the corresponding architectural component, which is usu-
ally decomposed in terms of an abstract aspect, concrete aspects, and/or classes; and
(ii) the refinement of the corresponding crosscutting or normal interfaces. The de-
tailed design of a normal interface involves the definition of the services to be made
available by the interface.

The detailed design of a crosscutting interface encompasses the specification of the
join points, pointcuts, advices, and inter-type declarations. Join points are well-
defined points in the dynamic execution of the system components. Examples of join
points are method calls and method executions. Pointcuts have name and are collec-
tions of join points. Advice is a special method-like construct attached to pointcuts.
Inter-type declarations introduce attributes, methods, and interface implementation
declarations into the components to which the crosscutting interface is attached.

Step D1. Refine the Kernel component.

a) Create a class to represent the agent type. This class should extend a generic, ab-
stract Agent class that captures the common behavior of all the system agents.

b) Define the main and auxiliary methods that implement the agent’s basic services.

c) Define the agent actions as methods.

d) Define the agent plans as classes.Specify plan actions as methods of plan classes.

e) Define the agent beliefs as simple strings or classes.

f) The knowledge elements are subclasses of the Belief, Goal and Plan classes.

Step D2. Refine the Interaction aspectual component.

a) Define the interaction infrastructures and corresponding sensors and effectors.

b) Define the agent’s internal message format.

¢) Define parsers for translating external messages to the internal message format.

d) Create the abstract and concrete aspects to modularize the interaction concern.

e) Refine the sensory interfaces, defining the external objects to be observed.

f) Refine the message reception interfaces, defining the join points where messages
should be received.

2) Refine the message sending interfaces, picking out the joint points where mes-
sages should be sent from the agent.

Aspectizing Multi-agent Systems: From Architecture to Implementation 131

Step D3. Refine the Adaptation aspectual component.

a) Create the abstract and concrete aspects to modularize the adaptation concern.

b) Refine the knowledge adaptation interfaces, enumerating the agent’s internal
events to be observed.

c) Refine the behavior adaptation interfaces, enumerating the agent’s internal events
to be monitored.

Step D4. Refine the Autonomy aspectual component.

a) Define the reactive, decision and proactive goals for the agent.

b) Create the abstract and concrete aspects to modularize the autonomy concern.

c) Refine the thread management interface, specifying the join points where threads
should be started and finalized.

d) Refine the goal creation interface, specifying the events to instantiate goals.

e) Refine the decision-making interfaces for capturing events that trigger agent deci-
sions.

f) Refine the crosscutting interfaces for capturing the events that affect the agent’s
autonomy degree.

Step D5. Refine the Mobility aspectual component.

a) Create the abstract and concrete aspects to modularize the mobility concern.

b) Refine the crosscutting interfaces for mobile elements, specifying the elements to
be moved together with the agent.

¢) Refine the crosscutting interfaces for agent travel, picking out the join points that
trigger the agent travel and the agent return.

Step D6. Refine the Learning aspectual component.

a) Create the abstract and concrete aspects to modularize the learning concern.

b) Refine the crosscutting interface for information gathering, describing the join
points to provide information and trigger the learning process.

¢) Refine the crosscutting interfaces for learning knowledge, specifying the attributes
and methods with learning-specific knowledge.

Step D7. Refine the Collaboration aspectual component.
a) Create the abstract and concrete aspects to modularize the collaboration concern.
b) Define the collaboration protocols and the corresponding roles.
¢) Refine the crosscutting interfaces for enforcing the collaboration protocols.
d) For each role:
a. Refine the interfaces for the role binding, describing the join points where the
role should be bound to the agent.
b. Refine the interfaces for role-specific knowledge, describing the methods and
attributes with role knowledge which should be introduced to the agent.
c. Refine the role aspects by starting from Step D2.

4.4 Implementation Stage

There are several aspect-oriented programming languages to support the implementa-
tion of aspect-oriented agent architectures, such as Aspect] [10] and Hyper/J [42].
Aspect] is the most widely used programming language, which extends the Java pro-
gramming language. The implementation of aspect-oriented agent architectures in
Aspect] is straightforward, since this language supports the definition of inter-type

132 Alessandro Garcia, Uira Kulesza, and Carlos Lucena

declarations, pointcuts and advices. However, there are some implementation steps
that require some guidance due to Aspect] features and restrictions as summarized
below. The reader can find a extensive list of implementation guidelines at [5].

For example, each agent instance must have, in general, its own instance of
agenthood or additional aspect. As a consequence, the agent aspects must be instanti-
ated per Agent instance. The current version of Aspect] supports the specification of
per-object aspects. We could describe the instantiation of the agent aspects using
perthis. However, the use of perthis restricts the scope of the aspect. When one Aspect]
aspect is declared to be singleton or static, its scope is the whole system and the as-
pect can crosscut all system classes. Per-object aspects can only crosscut the object
with which it is associated. Since agent concerns crosscut several classes, not only the
Agent class or the Role class, the perthis clause cannot be used in this context. As a
result, agent aspects are declared as singletons and introduce the methods and attri-
butes to the Agent and Role classes as inter-type declarations.

5 ExpertCommittee: The Case Study

This section introduces a MAS in order to illustrate the application of the guidelines
presented in the previous section. This system is a prototype derived from a case
study undertaken in the Software Engineering Laboratory at PUC-Rio in Brazil, from
herein referred to as EC (ExpertCommittee). EC is an open multi-agent system that
supports the management of paper submissions and the reviewing process for a con-
ference. The EC system has been chosen because it is a classical example of agent-
based application [43] and it involves all the agenthood and additional properties.
This system includes several combinations of agent concerns, which are typical of
many existing agent-driven applications.

The EC system encompasses two agent types: user agents and information agents.
Each agent type provides different services, but everyone is interactive, adaptive and
autonomous. The architecture of each agent type has different agent properties. For
simplicity purposes, this section focuses on the description of the user agents. User
agents are software assistants that automate time-consuming tasks of paper authors,
chairs, PC members and reviewers and coordinate their activities. Fig. 1 shows a par-
tial representation of the object-oriented design of the EC system.

5.1 The Architectural Stage

We describe below the accomplishment of the architectural steps (Section 4.2) to
define the architectural design of the user agents. Fig. 4 depicts the architectural view
of the EC user agents. The user agents have all the agenthood and additional architec-
tural aspects.

Step Al. The Kernel component of user agents has a normal interface, which makes
the agent services available to the environment (Al.a). The agent services can be
accessed either by sending an asynchronous request through the communication infra-
structure or by directly invoking them. The agents also have a normal interface for
accessing and updating the knowledge elements (A1.b). This is a private interface and
is not accessible by elements external to the agent.

Aspectizing Multi-agent Systems: From Architecture to Implementation 133

Step A2. User agents have an Interaction component that implements the three cross-
cutting interfaces: 1Sensory, IMessageReception, and IMessageSending. The Sensory
interface senses events in environment objects (A2.a). The IMessageReception inter-
face intercepts the messages arrival (A2.b). The IMessageSending interface defines
when messages need to be sent from agent plans and actions (A2.c). The Interaction
aspect’s interfaces crosscut the Kernel component, the Collaboration component, and
the Environment component. The Environment component represents the communica-
tion platform and the external entities observed or monitored by the agent.

Agenthood Additional Properties
IKnowledge
Adaptation ,O IBehavior
s Adaptation
S I
‘ linformation
Environment |, Gathering

: HE
H E E ILearning
romston [,~ Knowledge
1 i I /
IKnowledge | VIl IServices

IMessage Updatmg@ I d——#— —————
Reception H \ '

yy IMessgge vl

, Sending

1

1

! Kernel

)

1

:

1 L

., IDecision - -7

Making” -~ ,
IGoal el @ xocution
Legend: Creations, -~ Autonomy
@ aspectual component =
EI component
(ON crosscutting interface
normal interface

Fig. 4. The Aspect-Oriented Agent Architecture of User Agents

Step A3. The adaptive behavior of user agents involves two kinds of adaptation:
knowledge adaptation and behavior adaptation. As a consequence, they have a Adap-
tation component that realizes the crosscutting interfaces for both of them: IKnowl-
edgeAdaptation and IBehaviorAdaptation. The Adaptation component crosscuts the
Interaction component and the Kernel component. It is connected with the former
through the IKnowledgeAdaptation interface since knowledge adaptation may be re-
quired upon the receipt of external messages (A3.a). The connection with the later is
because knowledge adaptation is necessary whenever given internal events happen,
such as the change of beliefs. In addition, the Adaptation component crosscuts the
Kernel component through the IBehaviorAdaptation interface, since the selection of a
new plan is necessary whenever a new goal is set, and the plan execution may have to
be canceled due to the change of specific beliefs (A3.b).

Step A4. The Autonomy component conforms to the following crosscutting interfaces:
(i) IExecutionAutonomy, which specifies the kernel initialization as the join point to
create the agent threads (A4.a), (ii) IGoalCreation, which crosscuts the Interaction

134 Alessandro Garcia, Uira Kulesza, and Carlos Lucena

component and the Kernel component because it may be necessary to create goals
whenever messages are received and pieces of the agent knowledge are changed
(A4.b), and (iii) IDecisionMaking triggers the agent decisions (A4.d). User agents do
not have an interface to control the autonomy degree (A4.c).

Step AS5. User agents have a Mobility component that conforms to two crosscutting
interfaces: IMobileElement and ITravel. IMobileElement specifies all the Kernel ele-
ments as mobile elements because at least the agent kernel needs to be moved when
the agent departs to a remove environment (A5.a). ITravel crosscuts the Kernel and
Collaboration components since the execution of actions and plans triggers agent trav-
els across different hosts as well as the agent return to its home host (A5.b).

Step A6. User agents have a Learning component with two crosscutting interfaces.
The first one, linformationGathering, defines internal events in the Kernel component
as the information sources to be observed for learning purposes (A6.a). The second
one, ILearningKnowledge, specifies the learning-specific knowledge to be introduced
to the agent kernel (A6.b).

Step A7. EC agents have also a Collaboration component that aggregates the roles
played by the agents. The interfaces for enforcing collaboration protocols (A7.a) are
not represented in Fig. 4 since EC agents do not require this feature. It determines
when a given role is bound to the agent. Inner aspectual components represent the
agent roles. The Collaboration component is formed by four inner Role components
(A7.b), each one for a specific agent role: author, reviewer, PC member, and chair.
Each of the Role components implements the IBinding interface and the IKnowledge
interface.

5.2 The Detailed Design Stage

Due to space limitations, in this work, we discuss in detail only the steps involving the
agenthood concerns (D2-D4). The other steps (D1, D5-D7) are shortly described. A
more detailed description is found at [5]. Some figures are used to illustrate the de-
tailed design of the architectural aspects, which crosscut several agent classes and
aspects in the EC system. However, for simplification reasons, the figures only pres-
ent some of these classes and aspects. The others essentially follow the same pattern.
The figures represent the crosscut elements in gray.

The aSideML language (Section 4.1) also supports the modeling of the detailed de-
sign of aspects. The full view of an aspect provides a detailed description of its ele-
ments. An aspect is represented by a rectangle, like classes, with a diamond on its top.
The aspect’s internal structure declares the internal attributes and methods. Each
crosscutting interface is presented using the rectangle symbol with compartments. The
first compartment of a crosscutting interface represents inter-type declarations, and
the second compartment represents pointcuts and their attached advices. The notation
uses a dashed arrow to represent the crosscutting relationship.

Step DI. The Kernel component is refined as a set of classes, which represent the
agent itself, and knowledge elements (goals, beliefs, and plans). The Agent class
specifies the behavior common to the system’s agent types. The UserAgent class
extends the Agent class (D1.a), and contains the methods that implement the agent

Aspectizing Multi-agent Systems: From Architecture to Implementation 135

actions and agent’s basic services (D1.b, D1.c). The knowledge elements of user
agents are subclasses of the Belief, Goal and Plan (D1.f). Attributes of Agent sub-
classes can be used to represent simple agent beliefs. Plan actions are methods of Plan
subclasses (D1.d). The agent beliefs are attributes of the Agent subclasses (D1.e).

Step D2. User agents interact with the environment using two communication infra-
structures: JADE [15] and a blackboard architecture (D2.a). The blackboard is used
for internal communication between the agents and the JADE infrastructure is used to
interact with agents external to the system. The effectors and sensors associated with
these infrastructures are represented by separate class hierarchies (D2.a). The Sensor
and Effector subclasses represent sensors and effectors respectively, and cooperate
with environment classes. ACL [36] is the used communication language. The agents
also use an internal communication language, which is also compliant to the FIPA
specification [36] (D2.b). Specific classes are responsible for implementing the pars-
ers (D2.c).

The Interaction architectural component is decomposed in an abstract aspect
(D2.d), a concrete aspect (D2.d), and various auxiliary classes. Fig. 5 shows only the
aspects, sensors/effectors, and the crosscut elements (in gray); it omits the auxiliary
classes. The abstract aspect defines the interaction logic, which is common to all the
agent types and roles. It holds the inbox, the outbox, an abstract initialization method,
and methods to marshal and unmarshal the messages. This aspect also refines the
three crosscutting interfaces defined in the Interaction architectural aspect: 1Sensory,
IMessageSending, and IMessageReception.

The ISensory interface (D2.e) implements the abstract sensing pointcut that de-
clares which methods of the environment classes must be monitored. The sensing_
advice processes the external events and updates the inbox. The sensing pointcut is
also declared as abstract since the join points depend on the specific agent types and
roles.

The IMessageReception interface (D2.f) introduces the receiveMsg() method to the
Agent class in order to enable it to receive messages (inter-type declaration). This
interface also defines an incomingMsg pointcut for intercepting executions of the
method sense() on the Sensor classes; the goal is to detect the arrival of messages.
This pointcut is associated with an after advice responsible for processing the incom-
ing messages and updating the inbox.

The IMessageSending interface (D2.g) extends the Agent class to enable it to send
messages, by introducing the sendMsg() method to the Agent class. The interface also
defines an outgoingMsg pointcut that specifies the message senders. Note that the
outgoingMsg pointcut is abstract (Fig. 5) because the join points depend on the spe-
cific agent types and roles. The pointcut is concretized in the Interaction subaspects.
This pointcut contains an advice which runs after executions of those join points. The
purpose of the advice is to capture the information needed to send the message and
update the outbox. Note that the scattering of the interaction concern presented in
Fig. 1 is overcome in the aspect-oriented solution (Fig. 5).

The concrete aspect, called UserAgentlnteraction, extends the Interaction aspect to de-
fine the interaction behavior specific to the user agent. It implements the sensing
pointcut by specifying DB components, GUI objects, and business logic components
as environment entities to be observed. User agents monitor these elements in order to
adapt their knowledge and behavior and learn about the user preferences. This spe-

136 Alessandro Garcia, Uira Kulesza, and Carlos Lucena

cific aspect also implements the initialization methods, and the outgoingMsg pointcut
that specifies join points in the agent elements from which messages need to be sent
to the external world, such as methods of Plan subclasses, Agent subclasses, and Role
aspects (D2.g). This pointcut also crosscuts the Mobility aspect because the user agent
needs to send notification messages to local agents before moving to a remote envi-
ronment and after returning to the original environment.

K crosscutting
interface [“teeel

IMessage
Sending

Legend:

_beforeAdvice
afterAdvice_

ISensory

7 Interaction
inter-type — A i
-sendMsg() sensing_() " aroundAdvice_
|| inbox
pointcuts and ToutgoingMsg_() || outbox IMessage
advices Reception
init() K
marshal() receiveMsg()
WATEIEHEN) incomingMsg_()

pomememesmememeseceemened |Message | 7 T~ | eanenn, |TTTTTTCC -1

H ISensory !

P —~ Sending UserAgent H

i ikReViewefﬁ\ 2 Intera(?tion e i | Persistentcv

: CVUpdatePIanj outgoingMsg_() : Agenda st()
A - %
< Mobilty init() DSInterface |da()|—
UserAgent e() <? GUloperation() ||
execute() ()

judgeProposal()

[

e mmmmmm——————

UserAgentEffector UserAgentSensor

send() receive()
sense()

Fig. 5. The Detailed Design of the Interaction Component.

Step D3. The Adaptation architectural component of EC agents is decomposed in an
abstract aspect (D3.a), a concrete aspect (D3.a), and auxiliary classes. The abstract
aspect defines the generic adaptation protocol: events are sensed, conditions checked,
and adapters triggered. The aspect holds the adapter methods and a list of the adapter
objects. It contains the advices which either invoke either adapter methods or a spe-
cific adapter. The Adaptation aspect is extended by the UserAgentAdaptation aspect to
implement the adaptive behavior for the specific context of the user agents.

The abstract aspect also implements the two crosscutting interfaces: IKnowledge-
Adaptation (D3.b) and IBehaviorAdaptation (D3.c). They define pointcuts with generic
events that always trigger the knowledge and behavior adaptation, independently from
the agent type. The agent adaptation occurs in several circumstances: due to external
events — for example, message receptions — or due to internal events, belief changes,
new goal setting, exceptions thrown during a plan execution, and so forth.

Step D4. The Autonomy architectural component is refined as an abstract aspect
(D4.b), a concrete aspect (D4.b), and auxiliary classes. There are various Goal sub-
classes to define the reactive, decision, and proactive goals of the user agents (D4.a).
The DecisionPlan and ProactivePlan subclasses modularize the implementation of
more sophisticated decision algorithms and proactive strategies. The abstract Auton-
omy aspect defines the autonomy behavior common to all the agent types in the EC
system. The UserAgentAutonomy aspect extends the Autonomy aspect to implement

Aspectizing Multi-agent Systems: From Architecture to Implementation 137

the autonomous behavior for the specific context of user agents. This aspect holds the
decision and proactive goals, an integer number representing the autonomy degree,
initialization methods, and defines the autonomy protocol. It implements three cross-
cutting interfaces: IExecutionAutonomy, IGoalCreation, and IDecisionMaking. These
crosscutting interfaces define how the Autonomy aspect crosscuts different classes and
other aspects of software agents.

The |ExecutionAutonomy interface (D4.c) defines the pointcuts that specify when
control threads are attached to and detached from the Agent instances. It defines the
execution of Agent constructors as the join point to start the threads, and the agent
destruction (execution of the method kill()) as the join point to finalize the threads.
There are after advices associated with these pointcuts in order to invoke the compo-
nents that implement the Active Object pattern [24].

The IGoalCreation interface (D4.d) specifies join points in the agent classes which
events need to be detected to start a goal creation. It contains an advice which runs
after executions of actions on agent classes, actions on beliefs classes, action on plan
classes, and actions on another aspects associated with the agent (for example, Inter-
action aspects). Since the Autonomy aspect implements the autonomy protocol, it is
associated with the agent, plan or belief classes where changes to their state may trig-
ger a goal creation.

The IDecisionMaking interface (D4.e) specifies the receiveMsg() method on the In-
teraction aspect (D2) as join point because an agent often needs to decide whether and
which reactive goal instance should be created depending on the received messages.
After the receiveMsg() method is executed, there is an advice that takes the control on
the program execution and instantiate, if necessary, the goal decisions associated with
the message type. If the decision is positive, a reactive goal is instantiated. Otherwise,
a decision plan sends a message to the sender notifying the agent that the service
request will not be performed.

Steps D5-D7. The Mobility, Learning and Collaboration architectural aspects are also
decomposed in terms of abstract aspects, concrete aspects, and auxiliary classes.
Unlike the agenthood aspects, they are not associated with the Agent class because
they are not part of the agenthood. They are associated only with the UserAgent class.
For example, the Mobility aspects modularize the following issues: (i) the pointcuts
that describe the events which may lead the agent to travel to a remote environment or
to go back to the home environment, (ii) the advices responsible for checking the need
for the agent roaming and for calling the mobility actions, (iii) the data structures and
methods which control the agent itinerary, and (iv) the inter-type declarations that
specify which agent elements are mobile and serializable. As a consequence, the
agent classes are not intermingled with mobility code, therefore improving their main-
tainability and reusability. JADE is used as the mobility framework; some auxiliary
classes connect the mobility aspects with the JADE framework. Each mobility aspect
in the EC system crosscuts about 7 classes and aspects.

Learning aspects encapsulate the entire implementation of the learning concern, in-
cluding the learning-specific knowledge and the information gathering. Fig. 6 shows
that the Learning aspect separates the learning protocol from the kernel and other
aspects, such as UserAgent class, Plan classes, and role aspects. The Learning aspects
connect the execution points (events) on different agent classes with the correspond-
ing learning components, making it transparent to the agent’s basic functionality the

138 Alessandro Garcia, Uira Kulesza, and Carlos Lucena

particularities of the learning algorithms in use. These aspects are able to crosscut
some agent execution points in order to change their normal execution and invoke the
learning components. The execution points include the change of a knowledge ele-
ment, execution of actions on plans, roles, and agent types, or still some threw excep-
tion. Auxiliary classes are used to implement different learning techniques. This
learning experience is indirect because the agent will build its knowledge through the
results of the negotiations. Machine learning is used to address the knowledge
acquisition. Distinct learning techniques are used in the EC system: Temporal
Difference Learning (TD-Learning) [41] and Least Mean Squares (LMS) [41]. TD-
Learning is used by the reviewer role in order to learn the user preferences in the
subjects he/she likes to review. LMS is used by the chair to learn about the reviewer
preferences. Note that the scattering of the learning concern presented in Fig. 1 is
overcome in the aspect-oriented solution (Fig. 6).

<< crosscutting
interface >>
Information
Gathering
events_()
—
<< crosscutting Learning
Py interface >> init() TR
v Learning learn() *
RevisionProposal Knowledge adaptKnowledge() learningRate
processinformation()
reviewer
paper paperinterest
deadlines evaluation A
isAccepted()
getReviewer() getinterest()
getPaper()
LMS
S Wgent :
[interface >> Learning 5 TDLearning
P & Informa_tlon processInformation()
P Gathering init() getTD()
E i Reviewer ts_() Iz gett;ewargg
] events_{ setRewar
; UserAgent getResponse()
JudgementPlan

execute()
judgeProposal()

Fig. 6. The Detailed Design of the Learning Component.

5.3 The Implementation Stage

The implementation of the EC system was based on version 1.3 of the Aspect] lan-
guage [10]. The work [5] presents in detail implementation issues and sample code.
The EC implementation also used the JADE framework [15] and a blackboard archi-
tecture to support the communication among agents. The integration of the aspect-
oriented implementation with those infrastructures was almost straightforward. How-
ever, the agent architectures could be also implemented using other aspect-oriented
frameworks, such as AspectWerkz and JBoss. Although those frameworks support
dynamic weaving, they incorporate constructs similar to Aspect].

Aspectizing Multi-agent Systems: From Architecture to Implementation 139

However, some inter-aspect conflicts needed to be solved. For example, the Adap-
tation and Autonomy aspects have pointcuts defined for the same join point: the
executions of the method receiveMsg(). The Aspect] construct declare precedence
has been used to specify the order of execution between these aspects. Regarding the
interaction concern, there were several join points where messages should be sent to
other agents. The join points include methods on plan classes and role aspects. The
declaration of all those methods in the pointcut outgoingMsg is time-consuming. In
order to facilitate the specification of pointcuts, such methods have been named with
the prefix “prepare”. The definition of the pointcuts used a simple wildcard prepare*
to capture all those methods.

6 Lessons Learned

Three prototypes were built based on our proposed approach and using the Aspect]
programming language: (i) a multi-agent system for traffic management [5, 25], (ii)
the EC system [5], and (iii) a multi-agent system to manage a development environ-
ment for web portals [4, 6, 7]. These systems involved both reactive and cognitive
agents with different combinations between the agent concerns. This section presents
lessons learned on the design and implementation of aspect-oriented agent architec-
tures, and on empirical assessments [4, 5, 6].

Inseparable Concerns. The Interaction aspects do not modularize the message assem-
bling from different plans or roles; the message needs to be prepared within a method
on plan classes or on role aspects because its assembling is very coupled to the role or
plan context. One solution would be to separate the message assembling with aspects,
but it would result in higher complexity.

Repetitive and Time-Consuming Definitions. All the message senders of the system
must be specified in the pointcut inside the Interaction aspect. This might indeed be
repetitive and tedious, suggesting that Aspect] should have more powerful metapro-
gramming constructs. However, this is not an unsolvable problem because code-
generation tools can assist MAS engineers in this development step. In addition, we
can establish a naming convention and use wildcards supported by most aspect-
oriented languages. The implementation of the EC system used naming conventions.

Required Refactoring. In some circumstances, refactoring of the already defined as-
pects or classes may be needed as the system development evolves. For instance, the
realization of the Autonomy architectural aspect requires restructuring of the base
code associated with other agent components in order to expose suitable join points.
For instance, we need to enforce that each method which asks for the user confirma-
tion (when an agent decision is taken) returns a boolean value. This allows the aspect
to capture the user response and control the agent autonomy degree. In addition, we
have extracted code from existing methods into a new method to expose a method-
level join point. Tools to help with the restructuring would make it easier to introduce
aspects into an existing system.

Complex Structure for Simple Agents. Some simple reactive agents do not require
thread control, react only to few events, make very simple decisions, and do not have
proactive behavior. In this case, the autonomy code tends to be localized in fewer

140 Alessandro Garcia, Uira Kulesza, and Carlos Lucena

methods. The use of aspects in this specific situation can increase rather than decrease
the agent complexity.

Iterative Process. During our case studies [4, 5, 7, 22, 25], we have tried to “incre-
mentally” deal with agent concerns at the architecture and design stages, following
the order prescribed in Section 4. We have found that, as the MASs increases in com-
plexity, the boundary between increments is not as transparent as implied. For exam-
ple, the design and implementation of the mobility aspects required the creation of
new pointcuts in the interaction aspects previously defined. In this way, we mostly
had to follow an iterative process rather than an incremental approach in order to
implement the aspect-oriented agent architectures.

Empirical Evidence. A systematic evaluation has been carried out to assess the pro-
posed aspect-oriented approach with respect to relevant quantitative criteria [4]. We
have compared quantitatively our architectural approach with a mediator-based archi-
tecture [4, 5] using a metric-based assessment framework [8]. The tallies of lines of
code and number of attributes for the developed MAS in the mediator-based imple-
mentation were respectively 12% and 9% higher than in the aspect-oriented code. The
aspect-oriented project also produced better results in terms of complexity of opera-
tions (6%), component couplings (9%), and component cohesion (3%). The complete
description of the data gathered in this experiment can be found in [4].

7 Related Work

Dealing with several agent concerns, such as adaptation and learning, at the phase of
architecture definition has been recognized as a serious problem that has not received
enough attention [11, 12, 14]. In fact, related work in this area has been scarce, mak-
ing no attempt in considering agent concerns within the architectural stage. Research
in agent-oriented software engineering has concentrated on high-level methodologies
and modeling languages [17]. Our previous work [6] dealt with crosscutting agent
concerns, but it was a initial version of our approach and was focused on the detailed
design and implementation levels.

Section 3 presented the existing architectural approaches for the separation of
agent concerns. Software architects want to separate the application concerns in sepa-
rate components, but the existing architectural styles are not able to address this sepa-
ration in multi-agent systems. Our proposed agent architecture is different from a
mediator-based architecture because the composition of agent concerns is not central-
ized in a single component, the mediator. Each architectural aspect specifies how it
affects the other architectural components. The proposed architecture is not a reflec-
tive architecture since architectural aspects, unlike meta-objects, are not limited to be
attached to a single object. In addition, architectural aspects can change the interface
of other components by introducing fields and methods to them. Finally, the aspect-
oriented agent architecture is also different from layered agent architectures defined in
Kendall’s approach [26]. The architectural aspects are not structured as layers; each
architectural component can be associated with more than two components.

The proposed approach describes a set of architectural decisions, which contribute
to improve the maintainability of MASs. The achieved segregation limits significantly

Aspectizing Multi-agent Systems: From Architecture to Implementation 141

the impact of a change since the architectural components modularize the crosscutting
agent concerns. Unlike the use of mediator-based agent architectures, the use of as-
pect-oriented architectures support the functional encapsulation of the agent’s basic
functionality since the Kernel component is not intermingled with agent properties.
The crosscutting interfaces allow the addition of agenthood and additional properties
to the basic functionality in a way that is not intrusive. As a consequence, the
architectures of existing objects can be transformed into agent architectures without
any changes to their methods.

The aspect-oriented architecture also improves the chances for reuse of the agent
components. Applications that adopt this architecture can reuse and refine the archi-
tectural components in a more modular way since the crosscutting agent concerns are
encapsulated in aspects. The agent concerns are not scattered and tangled up with
each other. The improved separation of concerns facilitates also the construction of
heterogeneous agent architectures. Each architectural component is oblivious in how
it is modified by agent aspects. There is no reference in the Kernel component to the
agent aspects. As a consequence, it is easier add or remove aspects from the agent
architecture.

8 Conclusions and Ongoing Work

This paper presented an aspect-oriented stepwise approach meant to be simple enough
to be used in the development of reusable and maintainable agent architectures in
different kinds of agent-oriented systems. The approach follows an aspect-oriented
agent architecture [5], which is a high-level description of the agents’ internal struc-
ture in terms of architectural aspects and their relationships. The proposed aspect-
oriented approach supports: (i) the modularization of crosscutting agent concerns
from the architectural definition to the system implementation, (ii) the flexible inte-
gration of the agent concerns, and (iii) the independence of programming languages
or MAS implementation frameworks. Since the aspect-oriented method is indepen-
dent of programming language or implementation framework, a wide range of appli-
cation developers can employ it.

The use of the aspect-oriented architecture can minimize the complexity caused by
the crosscutting nature of agent properties. It proposes the use of aspects to provide a
clear separation of concerns between the agent’s basic functionality and the crosscut-
ting agent properties. Moreover, aspect-oriented architectures allow that the agent
properties to be incorporated into an object-oriented system when the developers want
to transform their predefined objects into agents. The incorporation of agent proper-
ties can be made by attaching the corresponding agent aspects to the existing non-
agent objects. However, some refactoring of the predefined objects may be required
to expose the suitable join points, as discussed in Section 6.1.

We have also worked on the definition of a pattern language to support the detailed
design of aspect-oriented agent architectures [5]. Each pattern in the language pro-
vides an aspect-oriented design solution for a specific crosscutting agent concern,
such as learning [22] and mobility [18]. As future work, we are planning to study
whether crosscutting agent concerns need to be managed at the requirements-level
and if so how to support this management.

142 Alessandro Garcia, Uira Kulesza, and Carlos Lucena

Acknowledgements

This work has been partially supported by CNPq under grants No. 141457/2000-7 and
No. 381724/2004-2 for Alessandro, grant No. 140252/2003-7 for Uird, and by
FAPERIJ under grant No. E-26/150.699/2002 for Alessandro. The authors are also
supported by the PRONEX Project under grant 7697102900, and by ESSMA under
grant 552068/2002-0.

References

1

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. F. Buschmann et al. Pattern-Oriented Software Architecture: A System of Patterns. John
Wiley Sons, 1996.

. C. Chavez. A Model-Driven Approach to Aspect-Oriented Design. PhD Thesis, Computer
Science Department, PUC-Rio, April 2004, Rio de Janeiro, Brazil.

. A. Garcia, M. Cortés, C. Lucena. A Web Environment for the Development of
E-Commerce Portals. Proceedings of the IRMA’01, Toronto, May 2001.

. A. Garcia et al. Separation of Concerns in Multi-Agent Systems: An Empirical Study. In:
“Software Engineering for Multi-Agent Systems II”, Springer, LNCS 2940, April 2004.

. A. Garcia. From Objects to Agents: An Aspect-Oriented Approach. PhD Thesis, Computer
Science Department, PUC-Rio, April 2004, Rio de Janeiro, Brazil.

. A. Garcia, C. Lucena, D. Cowan. Agents in Object-Oriented Software Engineering. Soft-
ware: Practice and Experience, Volume 34, Issue 5, April 2004, pp. 489-521.

. A. Garcia et al. Engineering Multi-Agent Systems with Aspects and Patterns. Journal of the
Brazilian Computer Society, Number 1, Volume 8, July 2002, pp. 57-72.

. C. Sant'anna, A. Garcia, C. Chavez, C. Lucena, A. Staa. On the Reuse and Maintenance of
Aspect-Oriented Software: An Assessment Framework. Proc. 17th Brazilian Symposium
on Software Engineering (SBES’03), Manaus, Brazil, October 2003.

. G.Kiczales, et al. Aspect-Oriented Programming. Proc. ECOOP’97, LNCS 1241, June 1997.

G. Kiczales et al. Getting Started with Aspect]. CACM, October 2001.

A.Pace et al. Architecting the Design of Multi-Agent Organizations with Proto-

Frameworks. In: “Software Engineering for MASs II””, LNCS 2940, Feb 2004, pp. 75-92.

A. Pace et al. Assisting the Development of Aspect-based MAS using the SmartWeaver

Approach. In: “Software Engineering for Large-Scale MASs”, LNCS 2603, March 2003.

V. Silva et al. “Taming Agents and Objects in Software Engineering”. In: “Software Engi-

neering for Large-Scale Multi-Agent Systems", Springer, LNCS 2603, March 2003.

N. Ubayashi, T. Tamai. Separation of Concerns in Mobile Agent Applications. Proc. of the

3rd Conference Reflection 2001, LNCS 2192, Kyoto, September 2001, pp. 89-109.

F. Bellifemine et al. JADE: A FIPA-Compliant Agent Framework. Proc. of the Practical

Applications of Intelligent Agents and Multi-Agents, pp. 97-108, April 1999.

A. Fuggetta, G. Picco, C. Vigna. Understanding Code Mobility. IEEE Transactions on

Software Engineering, vol.24, No.5, pp.342-361, 1998.

C. Iglesias, et al. A Survey of Agent-Oriented Methodologies. Proceedings of the ATAL-

98, Paris, France, July 1998, pp. 317-330.

A. Garcia et al. The Mobility Aspect Pattern. Proc. of the 4th Latin-American Conference

on Pattern Languages of Programming, SugarLoafPLoP'04. August, 2004, Fortaleza,

Brazil.

A. Amandi, A. Price. Building Object-Agents from a Software Meta-Architecture. In: Ad-

vances in Artificial Intelligence, LNAI, vol. 1515, Springer-Verlag, 1998.

E. Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software. Addi-

son-Wesley, Reading, 1995.

21

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.
39.

40.
41.

42.
43.

44.

Aspectizing Multi-agent Systems: From Architecture to Implementation 143

D. Camacho. Coordination of Planning Agents to Solve Problems in the Web. Al Commu-
nications, IOS Press, Vol. 16 (4), November, 2003, pp. 309-311.

A. Garcia et al. The Learning Aspect Pattern. Proc. of the 11th Conference on Pattern Lan-
guages of Programs (PLoP2004), September 2004, Monticello, USA.

E. Pulvermiiller, A. Speck, A. Rashid. Implementing collaboration-based Designs using
Aspect-Oriented Programming. Proc. of TOOLS-USA, 2000, p. 95 - 104, Jul 2000.

R. Lavender, D. Schmidt. Active Object: an Object Behavioral Pattern for Concurrent Pro-
gramming. In: “Pattern Languages of Program Design”, Addison-Wesley, 1996.

A. Costa. An Aspect-Oriented Software Architecture for Traffic Simulators. Master’s Dis-
sertation, University of Sao Paulo, October 2003. (In Portuguese)

E. Kendall et al. A Framework for Agent Systems. Implementing Application Frameworks
— OO Frameworks at Work, M. Fayad et al. (ed). John Wiley & Sons: 1999.

E. Kendall. Role Model Designs and Implementations with Aspect-oriented Programming.
Proceedings of OOPSLA’99, ACM Press, 1999, pp. 353-369.

M. D'Hondt, K. Gybels, V. Jonckers. Seamless Integration of Rule-Based Knowledge and
Object-Oriented Functionality with Linguistic Symbiosis. Proceedings of the 19th Annual
ACM Symposium on Applied Computing (SAC 2004), Nicosia, Cyprus, March 2004.

E. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cliffs, NJ, 1976.

N. Jennings. Agent-Oriented Software Engineering. Proc. of the 12th Intl. Conference on
Industrial and Engineering Applications of Artificial Intelligence, 1999, pp. 4-10.

M. Huhns, M. Singh (Eds.). Agents and Multiagent Systems: Themes, Approaches, and
Challenges. Readings in Agents, Chapter 1, Morgan Kaufmann Publishers, USA, pp. 1-23.
D. Rasmus. Rethinking Smart Objects: Building Artificial Intelligence with Objects. Cam-
bridge University Press, New York, 1999.

J. Briot, L. Gasser. Agents and Concurrent Objects. IEEE Concurrency, Special Issue on
Actors and Agents, 1998.

A. Rao, M. Georgeff. BDI Agents: From Theory to Practice. Proceedings of the 1st Intl.
Conference on Multi-Agent Systems (ICMAS-95), San Francisco, 1995; 312-319.

Shoham, Y. Agent-Oriented Programming. Artificial Intelligence, 60(1):51-92, Mar 1993.
FIPA, Agent Communication Technical Committee. Agent Communication Language -
FIPA'99 Draft Specification, 1999. http://www fipa.org.

S. Splunter, N. Wijngaards, F. Brazier. Structuring Agents for Adaptation. In: E. Alonso et
al (Eds), Adaptive Agents and Multi-Agent Systems, LNAI, Vol. 2636, 2003, pp. 174-186.
S.Russell, P.Norvig. Artificial Intelligence: A Modern Approach.Prentice Hall, 2 ed, 2002.
T. Norman, D. Long. Goal Creation in Motivated Agents. In: Wooldridge, Jennings (Eds.),
Intelligent Agents: Theories, Architectures, and Languages, LNAI 890: Springer, 1995.

B. Ekdahl. How Autonomous is an Autonomous Agent? Proc. of the 5th Conference on
Systemic, Cybernetics and Informatics (SCI 2001), July 22-25, 2001, Orlando, USA.

T. Mitchell. Machine Learning. McGraw Hill, New York, 1997.

P. Tarr, H. Ossher. Hyper/J User Manual, 2000. www.alphaworks.ibm.com/tech/hyper;j
F.Zambonelli,N.Jennings,M.Wooldridge. Organizational Abstractions for the Analysis and
Design of Multi-agent Systems. In:“Agent-Oriented Software Engineering”, Springer,
2001.

Z. Guessoum, J. Briot. From Active Objects to Autonomous Agents. IEEE Concurrency,
Special Series on Actors and Agents, Vol. 7, N. 3, 1999, pp. 68-76.

CAMLE: A Caste-Centric Agent-Oriented
Modelling Language and Environment

Lijun Shan! and Hong Zhu?

! Department of Computer Science, National University of Defence Technology
Changsha, 410073, P.R. China
lijunshancn@yahoo.com

2 Department of Computing, Oxford Brookes University, Oxford 0X33 1HX, UK
hzhu@brookes.ac.uk

Abstract. This paper presents an agent-oriented modelling language and envi-
ronment CAMLE. It is based on the conceptual model of multi-agent systems
(MAS) proposed and formally defined in the formal specification language
SLABS. It is caste-centric because the notion of caste plays the central role in
its methodology. Caste is the classifier of agents in our language. It allows mul-
tiple and dynamic classifications of agents. It serves as the template of agents
and can be used to model a wide variety of MAS concepts, such as roles, agent
societies, etc. The language supports modelling MAS at both macro-level for
the global properties and behaviours of the system and micro-level for proper-
ties and behaviours of the agents. The environment provides tools for construct-
ing graphic MAS models in CAMLE, automatically checking consistency be-
tween various views and models at different levels of abstraction, and
automatically transforming models into formal specifications in SLABS. The
uses of the CAMLE modelling language and environment are illustrated by an
example.

1 Introduction

One of the key factors that contribute to the progress in software engineering over the
past two decades is the development of increasingly powerful and natural high-level
abstractions with which complex systems are modelled, analysed and developed. In
recent years, it becomes widely recognized that agents represent an advance in this
direction that can unify data abstraction and operation abstraction. A number of agent-
oriented software development methodologies have been proposed in the literature;
see e.g. [1]. These proposals vary in how to describe agent and MAS at a higher ab-
straction level as well as how to obtain such a description. For example, Gaia [2]
provides software engineers with the organization-oriented abstraction in which soft-
ware systems are conceived as organized society and agents are seen as role players.
Tropos [3] emphasizes the uses of notions related to mental states during all software
development phases. The notions like belief, intention, plan, goals, etc., represent the
abstraction of agent’s state and capability.

Our work originates from formally specifying agent behaviour as responses to en-
vironment scenarios [4], developed into a formal specification language SLABS for
engineering agent-based systems [5], and applied to a number of examples of MAS
[6, 7]. In [8] and [9], a diagrammatic notation for modelling agent behaviours and

R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 144-161, 2005.
© Springer-Verlag Berlin Heidelberg 2005

CAMLE: A Caste-Centric Agent-Oriented Modelling Language and Environment 145

collaborations was respectively developed. This paper proposes a methodology of
agent-oriented software engineering called CAMLE, which stands for Caste-centric
Agent-oriented Modelling Language and Environment. Caste is the classifier of
agents in our modelling and specification languages. It allows multiple classifications
(i.e. an agent can belong to more than one caste) and dynamic classifications (i.e. an
agent can change its caste membership at run time), as well as multiple inheritances
among castes. It can be used to model a wide variety of MAS concepts, such as roles,
agent societies, behaviour normality, etc. It provides the modularity language facility
and serves as the template of agents in the design and implementation of MAS. The
notion of caste plays a central role in the methodology. We consider behaviour rules
as the basic abstraction for agent’s behaviour while leaving out mental state notions
such as belief and goal that are used in some other agent-oriented software researches,
though such notions can be represented in our framework. Behaviour rules incorporat-
ing agent’s perception to its environment represent the autonomy of agent’s behav-
iour. With the CAMLE language, a software system can be modelled from three per-
spectives. The supporting tools help users to construct MAS models in graphical
notations, to check the consistency between models from various views and at differ-
ent abstraction levels, and automatically translate the graphic models into formal
specifications.

The remainder of this paper is organized as follows. Section 2 reviews the underly-
ing conceptual model. Section 3 presents the modelling language. Section 4 briefly
reports the modelling tools. Section 5 concludes the paper with discussions on related
work and directions for future work.

2 Conceptual Model

The conceptual model of MAS underlying our methodology is the same as that of the
language SLABS [4, 5], which is a formal specification language designed for engi-
neering MAS. It can be characterized by a set of pseudo-equations. Pseudo-equation
(1) states that agents are defined as real-time active computational entities that encap-
sulate data, operations and behaviours, and situate in their designated environments.

Agent=<Data, Operations, Behaviour>gyironment (1)

Here, data represent an agent’s state. Operations are the actions that the agent can
take. Behaviour is described by a set of rules that determine how the agent behaves
including when and how to take actions and change state in the context of its desig-
nated environment. By encapsulation, we mean that an agent’s state can only be
changed by the agent itself, and the agent can decide ‘when to go’ and ‘whether to say
no’ according to an explicitly specified set of behaviour rules. Therefore, there are
two fundamental differences between objects and agents in our conceptual model.
First, objects do not contain any explicitly programmed behaviour rule. Second, ob-
jects are open to all computation entities to call its public methods without any dis-
tinction of them.

In our conceptual model, the classifier of agents is called caste. Castes classify
agents into various castes similar to that data types classify data into types, and
classes classify objects into classes. However, different from the notion of class in
object orientation, caste allows dynamic classification, i.e. an agent can change its

146 Lijun Shan and Hong Zhu

caste membership (called casteship in the sequel) at run time. It also allows multiple
classifications, i.e. an agent can belong to more than one caste at the same time. As all
classifiers, inheritance relations can also be specified between castes. As a conse-
quence of multiple classifications, a caste can inherit more than one caste. As a modu-
larity language facility, a caste serves as a template that describes the structure and
behaviour properties of agents in the caste, and as the basic organizational units in the
design and implementation of MAS. Pseudo-equation (2) states that a caste is a set of
agents that have the same structural and behavioural characteristics at any time mo-
ment t in the execution of the system. The structure of caste descriptions in SLABS is
shown in Fig.1.

Caste , = {agents | structure & behaviour properties} 2)

PhI} Student <= Student ()
Var ResearchGroup: Groups:
Visible actions and state variables Act GivePracticeClass (Course);
ReportResearchProgress (Supervisor)

=NcwCaste==Castcs (Instantiation)==

[nvisible actions and state variables

i isor | [I-=ReportProgress(Report
BRI | e v specification Supervisor: | [I--Rep . gr (Report)
description Staff If Supervisor: RequestReport
IL TL
Fig. 1. Caste descriptions in SLABS Fig. 2. An example of caste: PhD Student

For example, when modelling a university as an information system, each of the
people in the university can be modelled as an agent. They can be grouped into a
number of castes, such as the caste of students, the caste of faculty members and the
caste of secretaries. The students can be further classified into undergraduates, gradu-
ates and Ph. D students. Fig. 2 is an example of the caste definition of Ph. D student.

In the real world, an undergraduate student can become a postgraduate student or
alumni after graduation. To model this, the agents in an information system dynami-
cally change their membership to castes. The weakness of static object-class relation-
ship in current mainstream object-oriented programming has been widely recognized.
Proposals have been advanced, for example, to allow objects’ dynamic reclassifica-
tion [10]. In [11], we suggested that agents’ ability to dynamically change its roles is
represented by dynamic casteship. In our model, dynamic casteship is an integral part
of agents’ behaviour capability. Agents can have behaviour rules that allow them to
change their castes at run-time autonomously. To change its casteship, an agent takes
an action to join a caste or retreat from a caste at run time. Therefore, which agents
are in a caste depends on time even if agents can be persistent, hence the subscript of ¢
in pseudo-question (2). We believe that this feature allows users to model the real
world MAS naturally and to maximize the flexibility and power of agent technology.

In the research on agent-oriented methodologies, a number of notions have been
proposed in the literature to model agent-based systems, which include role, agent
society, organisation, normative behaviour, etc. The notion and language facility of
caste can be used to represent these concepts as discussed in [6]. For example, the set
of agents that play a specific role can be defined by a caste. The agents of a particular
society or community that obey a specific set of normative behaviour rules and share

CAMLE: A Caste-Centric Agent-Oriented Modelling Language and Environment 147

a set of resources can also be defined as a caste. However, the notions of societies and
role etc. are too specific and restrictive to be used as a language facility. For example,
all the people who speak a particular language, say Chinese, can be defined as a caste,
but it would be unnatural to consider them as playing any specific role. Similarly, a
set of software agents that follow a particular communication protocol can be defined
by a caste, but it would be unnatural to model them by a role. The concept of society
or community has a strong sense of membership. A person who speaks English does
not necessarily belong to the society of English people. A society may also consists of
agents playing different roles and obey different behaviour rules. Therefore, the con-
cept of society is not suitable to be used as a language facility of code template.

The notion of role has been widely used to characterize agents’ behaviour and in-
teraction in agent-oriented methodologies, especially in the analysis and specification
stage [13]. However, role is often used intuitively in system analysis. They are trans-
formed into agent properties at design stage and eventually disappear in programming
stage or represented indirectly as objects and classes. In contrast, caste not only over-
comes the limitations and weakness of the informal notions of roles and societies at
analysis and specification stage, but, as a language facility, can also be directly im-
plemented in a programming language such as SLABSp [12].

Equation (3) states that in our model a MAS consists of a set of agents but nothing
else. Our definition of agent implies that object is a special case of agent in the sense
that it has a fixed rule of behaviour, i.e. “executes the corresponding method when
receives a message”.

MAS = {Agent ,}, ne Integer 3)

Consequently, the environment of an agent in a MAS at time ¢ is a subset of the
agents, where some agents in the system may not be visible from the agent’s point of
view, as illustrated in pseudo-equation (4). Notice that, our use of the term ‘visibility’
is different from the concept of scope. In particular, from agent A’s point of view,
agent B is visible means that agent A can observe and perceive the visible actions
taken by agent B or obtain the value of agent B’s visible part of state at run time.

Environment , (Agent, MAS) € MAS - {Agent} 4)

Here, we take a ‘designated environment’ approach, i.e. the environment of an
agent is specified when an agent is designed. The environment description of an agent
or a caste defines what kinds of agents are visible. For example, it can be that the
agents in a particular caste are visible. Note that a designated environment is neither
closed, nor fixed, nor totally open. Since an agent can change its casteship, its envi-
ronment may change dynamically. For example, an agent’s environment changes
when it joins a caste and hence the agents in the caste’s environment become visible.
The environment also changes when other agents join the caste in the agent’s envi-
ronment. Therefore, the set of agents in the environment of an agent depends on time,
hence, the subscription ¢ in pseudo-question (4).

The communication mechanism in our model is that an agent’s actions and states
are divided into the visible ones and internal ones. Agents communicate with each
other by taking visible actions and changing visible state variables, and by observing
other agents’ visible actions and visible states, as shown in pseudo-equation (5). An
agent taking a visible action can be understood as generating an event that can be
perceived by other agents in the system, while an agent taking an internal action

148 Lijun Shan and Hong Zhu

means it generates an event that can only be perceived by its components. Similarly,
the value of an agent’s visible state can be obtained by other agents, while the value
of the internal state can only be obtained by its components.

A — B = A.Action & B.Observation 5)

This communication mechanism is different from message passing between objects
where each message invokes a corresponding method of the object that receives the
message. In our model, agents are active computational entities that execute concur-
rently. They are not invoked by messages. Instead, each agent observes the events
happened in its environment and takes actions according to its behaviour rules. How
an agent handles an event that it perceives is solely determined by the agent itself
because agents are autonomous. In general, the agent that produces an event may not
know which agent in the system will respond to the event or how the event will be
handled. Therefore, the agent does not expect any agent to participate in the genera-
tion of an event. It may not even wait for the event to be handled to progress its own
computation task. In this sense, the communication mechanism can be considered as
asynchronous and non-blocking. Of course, this mechanism does not define the com-
munication protocol and agent communication language. These issues should be ad-
dressed in the design and implementation of specific multi-agent system, rather than
predefined by the modelling language or meta-model.

3 Modelling Language

CAMLE employs the multiple view principle. A MAS model contains three types of
models: caste models, collaboration models and behaviour models. Each model con-
sists of one or more diagrams.

The caste model specifies the castes of the system and the relationships between
them. A caste is a compound caste if its agents are composed of a number of other
agents; otherwise, it is atomic. For example, as shown in Fig 3 (a), the System is di-
rectly composed of agents of caste A and B. Each of them can be further decomposed
into smaller components N; and N,, and M, and M,, respectively. For each compound
caste, such as the System, A and B, a collaboration model and a behaviour model are
constructed. Atomic castes only have behaviour models because they have no compo-
nents thus no internal collaboration.

The overall structure of a system’s collaboration models and behaviour models can
be viewed as a hierarchy, which is isomorphic to the whole-part relations described in
the caste model; see e.g. Fig 3 (b).

The following subsections describe each type of model and discuss their uses in
agent-oriented software development, respectively; see [8, 9] for more details. Sub-
section 3. 4 discusses the consistency between various kinds of models.

3.1 Caste Model

We view an information system as an organization that consists of a collection of
agents that stand in certain relationships to one another by being a member of certain
groups and playing certain roles, i.e. in certain castes. They interact with each other
by observing their environments and taking visible actions as responses to the envi-
ronment scenarios. The behaviour of an individual agent in a system is determined by

CAMLE: A Caste-Centric Agent-Oriented Modelling Language and Environment 149

g 1 : 1
™ "Collaboration I Ir Behaviour I
1| General Specific ||l || Behaviour |[Scenario ||l
||_Diagram Diggrams J| I|_Diagram Diagrams

[Eobraion ||~ Beravion [Cobomion| | Bebviour |
| Model |l Model | _ Model 11 Model |
I I
I | | I
M _ __ M M _ M _
I"Behaviour | I"Behayiour | | 'Behaviour | | "Behaviour |
Model_ | L _Model | | _Model_ | | _Model |

(b) Collaboration Models and Behaviour models

Fig. 3. Overall Structure of CAMLE Models

the ‘roles’ it is playing. An individual agent can change its role in the system. How-
ever, the set of roles and the assignments of responsibilities and tasks to roles are
usually quite stable [13]. Such an organizational structure of information systems is
captured in our caste model.

A caste diagram identifies the castes in a system, indicates the inheritance, aggre-
gation and migration relationships between them. Fig 4 shows the notation of caste
diagrams and illustrates it with the university example introduced in section 2.

The inheritance relationship between castes defines sub-groups of the agents that
have special responsibilities and hence additional capabilities and behaviours. Migra-
tion relations specify how agents in the castes can change their casteships. There are
two kinds of migration relationships: migrate and participate. A migrate relation from
caste A to B means that an agent of caste A can retreat from caste A and join caste B.
A participate relation from caste A to B means that an agent of caste A can join caste
B while retaining its casteship of A. For example, in Fig 4, an undergraduate student
may become a postgraduate after graduation. A postgraduate student may become a
PhD student after graduation or become a faculty member. Each student becomes a
member of the alumni of the university after leaving the university. A faculty member
can become a part time PhD student while remaining employed as a faculty member.
From this model, we can infer that an individual can be both a student and a faculty
member at the same time if and only if he/she is a PhD student.

150 Lijun Shan and Hong Zhu

oo]

-
W/

Caslc || Caste node

—> TInherit
----- > Migrale || Alumni " University Member " Department
®--->> Participate R [
—< Aggregate %l =

e 7 S tary K
—< Congregate %tu:icm IFaCUlt}jl e
—® Composite | 7 S

.

Module
Manager

An agent may contain a number of components that are also agents. The former is
called compound agent of the latter. In such a case, there exists a whole-part relation-
ship between the compound agent and the components. We identify three types of
whole-part relationships between agents according to the ways a component agent is
bound to the compound agent and the ways the compound agent controls its compo-
nents. The strongest binding between a compound agent and its components is com-
position in which the compound agent is responsible for creation and destruction of its
components. If the compound agent no longer exists, the components will not exist.
The weakest binding is aggregation, in which the compound and the component are
independent to each other, so that the component agent will not be affected for both
its existence and casteships when the compound agent is destroyed. The third whole-
part relation is called congregation. It means if the compound agent is destroyed, the
component agents will still exist, but they will lose the casteship of the component
caste.

The composition and aggregation relation is similar to the composition and aggre-
gation in UML, respectively. However, congregation is a novel concept in modelling
languages introduced in by CAMLE. There is no similar counterpart in object ori-
ented modelling languages, such as UML. It has not been recognized in the research
on object-oriented modelling of whole-part relations [14]. We believe that it is impor-
tant for agent-oriented modelling because of agents’ basic feature of dynamic caste-
ship. For example, as shown in Fig 4, a university consists of a number of individuals
as its members. If the university is destroyed, the individuals should still exist. How-
ever, they will lose the membership as the university member. Therefore, the whole-
part relationship between University and University Member is a congregation rela-
tion. This relationship is different from the relationship between a university and its
departments. Departments are components of a university. If a university is destroyed,
its departments will no long exist. The whole-part relationship between Department
and University is therefore a composition relation.

The semantics of the whole-part relations at modelling level given above has a
number of implications on the operations on agents at implementation level , espe-
cially the creation and destroy of agents. For example, a composition relation implies
that a component agent can be destroyed when the compound agent is destroyed.

- - ~
-~
S e’

| Undergraduate | | Postgraduate | PhID student Statt
Manager

Fig. 4. Caste diagram: notations and example

CAMLE: A Caste-Centric Agent-Oriented Modelling Language and Environment 151

In contrast, a component agent must be kept intact even if the compound agent is
destroyed if the whole-part relation is aggregate. In object-oriented systems, a com-
ponent object can be destroyed or garbage collected if there is no more reference to
the component object. Therefore, to support garbage collection, a reference count to a
component object should be maintained and the reference count must be decreased if
the compound object is destroyed. However, in agent-oriented systems, because
agents are active computation entities, an agent cannot be destroyed unless explicitly
instructed by the user even if it is not a component of any compound agent. For con-
gregation relation, when a compound agent is destroyed, the component agents should
not be destroyed, but their casteship must be changed so that they are no longer mem-
bers of the component castes of the compound agent. It is an open question whether
or not an agent should be destroyed if it no longer belongs to any caste.

3.2 Collaboration Model

While caste model defines the static architecture of MAS, collaboration model implic-
itly defines the dynamic aspect of the MAS organization by capturing the collabora-
tion dependencies and relationships between the agents.

Agents in a MAS collaborate with each other through communication, which is es-
sential to fulfil the system’s functionality. Such interactions between agents are cap-
tured and represented in a collaboration model. In CAMLE, a collaboration model is
associated to each caste and consists of a set of collaboration diagrams.

A collaboration diagram specifies the interaction between the agents in the system
or in a compound agent. Fig. 5 gives the notations.

Agent node: AgentName:Caste Caste node:

o) N Actions N
Communication Link: 1 ——> 2

Fig. 5. Notation of Collaboration Diagram

There are two types of nodes in a collaboration diagram. An agent node represents
a specific agent. A caste node represents any agent in a caste. An arrow from node A
to node B represents that the visible behaviour of agent A is observed by agent B.
Therefore, agent A influences agent B. When agent B is particularly interested in
certain activities of agent A, the activities can also be annotated to the arrow from A
to B. Although this model looks similar to collaboration diagrams in UML, there are
significant differences in the semantics. In OO paradigm, what is annotated on the
arrow from A to B is a method of B. It represents a method call from object A to ob-
ject B, and consequently, object B must execute the method. In contrast, in CAMLE
the action annotated on an arrow from A to B is a visible action of A. Moreover, agent
B is not necessarily to respond to agent A’s action. The distinction indicates the shift
of modelling focus from controls represented as method calls in OO paradigm to
collaborations represented as signalling and observation of visible actions. It fits well
with the autonomous nature of agents.

152 Lijun Shan and Hong Zhu

3.2.1 Scenarios of Collaboration. One of the complications in the development of
collaboration models is to deal with agents’ various behaviours in different scenarios.
By scenario, we mean a typical situation of the operation of the system. In different
scenarios, agents may pass around different sequences of messages and may commu-
nicate with different agents. Therefore, it is better to describe them separately. The
collaboration model supports the separation of scenarios by including a set of collabo-
ration diagrams. Each diagram represents one scenario. In such a scenario specific
collaboration diagram, actions annotated on arrows can be numbered by their tempo-
ral sequence. Fig. 6 below gives an example of scenario-specific collaboration dia-
gram. It describes the collaborations of an undergraduate student with his/her personal
tutor, the faculty members who give lectures and the PhD students who are practical
class tutors.

PhDStudent

6.Give[practical class)

5.Attend(practical class)

4.Give[lecture)

2.5uggestfacademic advice]

5IUd

n

ergraduate
é 3.Attend(lecture]

PersonalTutor:Faculty

1.Request[course advice

Fig. 6. An example of Scenario-Specific Collaboration Diagram

In addition to such specific diagrams, a general collaboration diagram is also asso-
ciated to the caste to give an overall picture of the communication between all the
component agents by describing all visible actions an agent may take and all possible
observers of the actions. Fig. 7 describes the communications within a department
between various agents.

3.2.2 Refinement of Collaboration Models. The modelling language supports mod-
elling complex systems at various levels of abstraction, and to refine from high-level
models of coarse granularity to more detailed fine granularity models. At the top
level, a system can be viewed as an agent that interacts with users and/or other sys-
tems in its external environment. This system can be decomposed into a number of
subsystems interacting with each other. A sub-system can also be viewed as an agent
and further decomposed. As analysis deepens, a hierarchical structure of the system
emerges. In this way, the compound agent has its functionality decomposed through
the decomposition of its structure. Such a refinement can be carried on until the prob-
lem is specified adequately in detail. Thus, a collaboration model at system level that
specifies the boundaries of the application can be eventually refined into a hierarchy
of collaboration models at various abstraction levels. Of course, the hierarchical struc-
ture of collaboration diagrams can also be used for bottom-up design and composition
of existing components to form a system.

Fig. 8 gives an example of general collaboration diagram that refines the caste
Dept Office. In this diagram, the agents in the castes of Student and Faculty as well as
a specific agent called Dept Head in the caste of Faculty form the environment of the
caste Dept Office. Therefore, they are visible for the component agents of the caste.

CAMLE: A Caste-Centric Agent-Oriented Modelling Language and Environment 153

Report{progress]
Supervisor:Faculty > PhDStudent

Suggest{research topic]

Give[practical class]

Attend[practical class]

Suggestfacademic advice]
AgreeReferee(] Attend[lecture]

PersonalTutor:Faculty ¢ Undergraduate -

Request[course advice] Give(lecture]

Request[reference]

Selectimodule]

Announce[module resuli] P B GorTrer

Offer[graduate course]

Result(exam]

Faculty

A

Instruct]] l&—

DeptHead:Faculty < DeptOffice
Report()

Fig. 7. An example of general collaboration diagram

— DeptOffice
Apply[graduate course)

e

[
Offer[graduate course]

- |

Selectimodule]

UndergraM

Announce[module resulf] {/\

Report[)

Assignfteaching]
Inform[class list]

DeptHead:Faculty

Inform[class list]

Inform[module list]
Inform[exam result]

Accinnlt hil‘lg

i

1 Instruct()
aculty StaffManager |l

Resultfexam)]

=

Fig. 8. An example of general collaboration diagram that refines a caste

3.3 Behaviour Model

While caste and collaboration models describe MAS at the macro-level from the per-
spective of an external observer, behaviour model adopts the internal or first-person

154 Lijun Shan and Hong Zhu

view of each agent. It describes an agent’s dynamic behaviour in terms of how it acts
in certain scenarios of the environment. A behaviour model consists of two kinds of
diagrams: scenario diagrams and behaviour diagrams.

3.3.1 Scenario Diagrams. From an agent’s point of view, the situation of its envi-
ronment is characterized by what is observable by the agent. In other words, a sce-
nario is defined by the sequences of visible actions taken by the agents in its environ-
ment. Scenario diagrams identify and describe the typical situations that the agent
must respond to. Fig. 9 shows the layout of scenario diagrams. Fig. 10 gives the nota-
tions for specifying visible events and their temporal ordering in scenario diagrams, as
well as logic connective for the combination of situations.

. - . ™ i - 1
Scenario Name v Qualifier

Swim

h |
[1
[1
[1
Lane N ' [Action2]
i :
N 1
N 1

)

(a) The layout of scenario diagrams (b) The layout of swim lanes

Swim
Lane 1

T
1
1
1
1
1
1

g Logic connection network

Fig. 9. Format of Scenario Diagram

!

|rt: Act(pi....24) | Single action node: the agent takes an act with parameters py....p, at time t .

R-Exp
r Repetitive action node: the agent takes act repetitively at time t, where R-
15 Act(prLa) | Exp defines the number of repetition of the action.

==

|t State assertion node: the agent’s state satislies the predicate at time t.

C-txp Continuous state assertion node: the agent’s state satisfies the predicate
rt.— w for a continuous period of time, where the period satisties the expression
C-Exp.

A T-Exp Immediate temporal order between the events: event B is immediately
. > |E| after event A, where T-Exp is the constraint on the time gap between
event A and B.

Tixp l Discrete temporal order between the events: event B is afler evenl A,
=== . while there may be other events between them, where T-Exp is the con-

straints on the time gap between the events,

— Logic links connect logic connective nodes

@ @ Logic connective nodes

Fig. 10. Notations of Scenario Diagram

For example, Fig. 11 describes a scenario where Greenspan announces that the in-
terest rate will increase by 0.25 points and all stock market analysts recommend sell
Microsoft’s share.

CAMLE: A Caste-Centric Agent-Oriented Modelling Language and Environment 155

4 ™

Stormy_Market

Greenspan All A: Stock_ Market_Analyst

'
]
|Nt:wRate[+._ O.25)| , | Recommend(Sell, Microsoft)
)
)
]

Fig. 11. Example of scenario diagram

3.3.2 Behaviour Diagrams. Behaviour diagrams describe agents’ designed behav-
iour in certain scenarios. For each caste, a behaviour diagram defines a set of behav-
iour rules. Each rule describes how the agent of the caste should respond to a particu-
lar situation in the environment (i.e. in a scenario). The notation of behaviour
diagrams includes the notation of scenario diagrams plus those in Fig. 12.

Scenario node: a scenario identifier, or a detailed scenario description.

I_Precondmoll I Precondition node: give the precondition of an event.

Transition bar: conflux of scenario, precondition and previous events as
premise of behaviour rule.

= Action arrow: link from behaviour rule’s previous events to transition bar.

Fig. 12. Notation for behaviour diagrams

A behaviour diagram contains event nodes linked together by the temporal order-
ing arrows as in scenario diagrams to specify the agent’s previous behaviour pattern.
A transition bar with a conflux of scenario, precondition and previous pattern and
followed by an event node indicates that when the agent’s behaviour matches the
previous pattern and the system is in the scenario and the precondition is true, the
event specified by the event node under the transition bar will be taken by the agent.
In a behaviour diagram, a reference to a scenario indicated by a scenario node can be
replaced by a scenario diagram if it improves the readability. The behaviour diagram
in Fig. 13 partly defines the behaviour of an undergraduate student. It states that if the
student is in the final year and the average grade is ‘A’, the student may request a
reference from the personal tutor for the application of a graduate course. If the per-
sonal tutor agrees to be a referee, the student may apply for a graduate course. If the
department office offers a position in a graduate course, the student will join the
Graduates caste and retreat from the Undergraduates caste.

In CAMLE language, each agent/caste has a designated environment, which is de-
fined by its environment description. Therefore, in the development of a behaviour
model for a given agent/caste, the modeller needs not to know all agents in the sys-
tem, but only those in the environment. The modeller also does not need to know the
full details of the behaviour of the agents in its environment, but just their capabilities
in terms of the actions that they can take. As shown in the above example, the model-
ler needs not to know how a faculty member makes decisions on whether or not to
write a reference for his/her tutee, and how the department decides who will be ac-

156 Lijun Shan and Hong Zhu

| PersonalTuarFacuty__ / _______ ’
| PersonalutorFaculy
| | |

\mwes\‘[refﬂencg]

|
Mmoo 1 =
_I

(=]
=
1)
o
)
=3
=
]
=
1]
(=]
o
=
=
o)
3]

‘ JOIN[Graduate;QUIT[Undergraduate]

Fig. 13. Behaviour Diagram for Undergraduate Student

cepted as a postgraduate student. What the modeller only needs to know is that the
personal tutor is capable of writing a reference letter and the department is capable of
make a decision on the intake of postgraduate students'. We believe that this is per-
haps the minimal amount of information that a modeller need to know about the sys-
tem that his component will collaborate with.

3.4 Consistency of Models

Like all multiple view modelling languages, a model in CAMLE may have inconsis-
tency between various types of models. Errors such as ill-formed diagrams may be
introduced. Furthermore, because there are overlaps of information in different mod-
els, inconsistency between models can occur. In the case studies of CAMLE language
and the modelling environment, we found the following types of errors and inconsis-
tencies are among the most common problems.

(1) The same agent or caste may be refereed to with slightly different names.

(2) The set of actions occurred in the specific collaboration diagrams that specify
various collaboration scenarios often does not match the set of actions declared in
the corresponding general collaboration diagram.

(3) The names and parameter types of the actions defined for one caste/agent often
do not match the references to these actions in scenario diagrams and behaviour
diagrams.

(4) The behaviour of an agent or caste as described in a collaboration model is often
inconsistent with what is defined in the behaviour model. For example, a collabo-
ration model requires an agent to have certain sequence of activities, but the be-
haviour model does not define a corresponding behaviour rule or rules. It is also
common that a behaviour rule requires the observation of an agent’s visible action
but the definition of the agent does not contain the action as a visible one.

I Of course, in a more complicated system, if the modeller does not have such knowledge,
he/she needs to know how his/her agent can discover such knowledge at runtime.

CAMLE: A Caste-Centric Agent-Oriented Modelling Language and Environment 157

In order to ensure the consistency between various models and models at different
levels of abstraction, three types of the consistency constraints have been identified
and formally defined in the CAMLE language. Automated tools are implemented in
the modelling environment to check if these consistency constraints are satisfied.
These consistency constraints including (A) well-formedness conditions imposed on
each diagram, (B) intra-model consistency constraints that are imposed on diagrams
of the same model at the same abstraction levels, and (C) inter-model consistency
constraints that are imposed either on the same type of models at different abstraction
levels, or on different types of models at the same level of abstraction. The definitions
of the constraints are omitted here for the sake of space; see [15] for details.

4 Support Environment

A software environment to support the process of system analysis and modelling in

CAMLE has been designed and implemented?. CAMLE aims at representing informa-
tion systems naturally using the conceptual model of MAS presented in the previous
section and facilitating the reasoning about such systems. It serves two interrelated
purposes, i.e. to develop abstract descriptive models of current systems and to develop
prescriptive designs of systems to be implemented. Therefore, in addition to model
construction, two key features of the language and environment are regarded as of
particular importance: (a) the consistency check between various models from differ-
ent views and at different levels of abstraction, and (b) the transformation of dia-
grammatic models into formal specifications. Details of these functionalities are be-
yond the scope of this paper and are reported separately [15].

Fig 14 shows the architecture of the current CAMLE environment and its main
functionality. The diagram editor supports the manual editing of models through
graphic user interface. The well-formedness checker ensures that user entered models
are well-formed, hence prevents syntactically incorrect diagrams from being
processed. The partial diagram generator can generate partial models (incomplete
diagrams) from existing diagrams to help users in model construction. It is based on
the consistency constraints so that the generated partial diagrams are consistent with
existing ones according to the consistency conditions. Consistency checking tools that
help to ensure the well-formedness, consistency and completeness of system models
are based on consistency constraints defined by the CAMLE language. Fig 15 is a
screen snapshot of the output of the consistency checking tool. The diagnostic infor-
mation helps users to locate and correct errors in the checked model.

The transformation from graphic models in CAMLE into formal specifications in
SLABS enables engineers to analyse, verify and validate system models before the
system is implemented. The specification generation tool in the CAMLE environment
can automatically derive a formal specification in SLABS after a model is constructed
and its consistency checked. Fig 16 shows a screen snapshot of the tool-generated
specification of the caste Undergraduate.

Besides the University example used in this paper, a number of case studies of the
modelling language and its modelling environment have been conducted. These case
studies include the following.

2 The tool is available for free for academic and research purposes. Please contact the authors.

158 Lijun Shan and Hong Zhu

L,'?;ers' Formal
Requirsments Specifications

Specificatio
Generalor

Maodel
Manager

Behaviour!
Collaboration

Editor

Model
Checker

Partial
Diagram

Caste/
Behaviour
Checker

Collaboration
Checker

Gieneral!
Specific
Checke

Check
Result

Fig. 14. The Architecture of CAMLE Environment

| Bile Edt Yiew Tools Window Help == x|
NIRRT NEIETR
&l x| F Time [log infa |
o B ot | = 2004/07/15 08:13:14 [Check model]
0 Caste =] 2004007113 08:13:14 [Super-sub collaboration diagrams consistency check] finished
B Collaboration = 08:13:14 [General-specific collaboration diagrams consistency check] finished
- == main > 05:13:14 [Behavior-Scenario diagrams consistency check] finished
"% Undergradua| [Vl 200407013 08:13:14 [Collabor ation diagrams-caste diagrams consistency check] finished
--™% Undergradua ? 2004007113 08:13:14 Warning 003 [environment in collaboration/behavior diagrams inconsistenc
1% PhDStudent 'ModuleManager' in <collaboration model > missed in <Behavioril
18 DeptOffice ? 2004007113 08:13:14 Warning 003 [environment in collaboration/behavior diagrams inconsistenc
=11 Behavior 'StudentManager' in <collaboration model> missed in <Behavior'
15 Undergradua ! 2004/07/13 08:13:14 Error 017 [actions from environment in behavior/collsboration diagrams inc

=+ Specification

'Givellecture)' in <Behavior\Undergraduate > missed in <collabor
13 Undergradua ! 2004007113 08:13:14 Error 017 [actions from environment in behaviorfcollaboration diagrams inc
‘Giveflecture)' in <BehavioriUndergraduate > missed in <collabor
? 200407113 08:13:14 ‘Warning 005 [actions from environment in collaboration/behavior diagrams
‘Announce{module result)' in <collaboration model> missed in <E
? 200407113 08:13:14 ‘Warning 005 [actions from environment in collaboration/behavior diagrams
'Cffer{graduate course)' in <collaboration model> missed in <Be
200407113 08:13:14 [Collaboration diagrams-behavior diagrams consistency check] finished
LI—I LI 7 200407113 08:13:14 ‘Warning 002 [Migration or participation in castefbehavior diagrams incon:
= (—I- - 5
Ready [o[

Fig. 15. Screen snapshot of the consistency checking tool’s output

CAMLE: A Caste-Centric Agent-Oriented Modelling Language and Environment 159

ot

— Undergraduate<=

I

ACTION Request[course advice]. Request[reference). Select{module): Apply(gr
Attend(practical class); Attend(lecture);

P

course];

[!Status = FinalY'ear; Average = 'A'] | > Request{reference);

WHERE Grad course availabl
[P BTt [Request{reference]] |-> Apply[graduate course);
IF PersonalTutor:Faculty. [Agree as referee];
[Apply[graduate course]] |> JOIN[Graduate):QUIT{Undergraduate].
IF CS:DeptOffice. [Offer Graduate Course];
[Request(course advice]] |-> Selectimodule);
IF PersonalTutor:Faculty. [Suggest{academic advice]]:
[Selectimodule]] |-> Attend(lecture);
IF Faculty. [Give(lecture]]:
[Attend(lecture]] |-> Attend[practical class);
IF PhDStudent. [Give[practical class]];

‘ PersonalTutor:Faculty

Fig. 16. Screen Snapshot of Generated Specification of the Caste Undergraduate

e United Nations’ Security Council: The organisational structure and the work pro-
cedure to pass resolutions were modelled and a formal specification of the system
in SLABS was generated. Details of the case study as well as modelling in other

agent-oriented modelling notations can be found on AUML’s website’.

e Amalthaea: Amalthaea is an evolutionary multi-agent system developed at MIT’s
Media Lab to help the users to retrieve information from the Internet [16]. The
system was modelled and a formal specification was generated.

e Web Services: The case study modelled the architecture of web services and an
application of web services on online auctions. A formal specification in SLABS
of the architecture and application was generated successfully. More details of the
specification of web services in SLABS can be found in [17].

In the case studies, we found that the CAMLE language was highly expressive to
model information systems’ organisational structures, dynamic information process-
ing procedures, individual decision making processes, and so on. Models in CAMLE
were easy to understand because they naturally represent the real world systems. The
automated environment greatly helped to manage the consistency between various
diagrams from difference views and at different abstraction levels. It significantly
reduced the difficulty in the development of formal specifications of multi-agent sys-
tems especially for complicated systems such as Amalthaea.

5 Conclusion

This paper presented the agent-oriented modelling language and environment
CAMLE. It is based on the conceptual model of MAS of the formal specification
language SLABS. Models represented in the CAMLE can be automatically checked

3 URL: http://www.auml.org/

160 Lijun Shan and Hong Zhu

for consistency and transformed into formal specifications in SLABS by the tools in
the modelling environment. The modelling language has a number of novel features,
which include the congregate whole-part relation and migration relation between
castes, the designated environment descriptions, scenario diagrams, scenario driven
behaviour rules, and most importantly, the concept of caste.

There have been a number of efforts in the direction of AO methodology, many of
which focus on the process of MAS engineering as well as the representation of MAS.
With regard to conceptual model of the methodologies, there is a fundamental differ-
ence between CAMLE and the methodologies that are based on mental state related
notions such as belief, desire, intention, goal and plan. Although these notions are
widely used, their meanings vary from people to people in different methodologies.
CAMLE replaces these notions with an abstract model of agents as encapsulation of
data, operation and behaviour. CAMLE also has a fundamental distinction from the
methodologies that are based on social organization related notions such as roles,
agent society and organization structure. CAMLE replaces such intuitive concepts
with a well-defined language facility caste, which is easy to understand and use from
software engineering perspective. Caste can be used to represent a number of the
concepts in agent-oriented modelling, such as roles, agent societies, normative behav-
iour, common knowledge and protocols, etc. [6]. The caste-centric feature enables us
to achieve simplicity in the design of an expressive modelling language and efficiency
in the implementation of the powerful environment.

Among the related work, Gaia is perhaps one of the most mature agent-oriented
software development methodologies at the moment. It does not commit to specific
notations for modelling concepts such as roles, environment and interaction [1]. UML
notation are widely used, e.g. in Tropos, PASSI [18] and AUML [19]. However, there
is no clearly defined conceptual model or meta-model underlying the uses of UML
notations for agent-oriented modelling although there are fundamental differences
between agents and objects as discussed in section 2 and 3.

A related work on agent-oriented modelling language is ANote [20], which also
provides a set of diagrams to model different views of MAS. Systems’ structural as-
pects, dynamic aspects and physical aspects are specified with the notations represent-
ing the concepts of goal, agent, ontology, scenario, planning, interaction and organi-
zation etc. Although the concepts and notations are different from the ones used in
CAMLE, we share the same opinion that using (modified) OO paradigm to model
agent-based system is not desirable.

There are several issues remaining for future work. We are investigating software
tools that support model-based implementation of MAS in CAMLE. The design and
implementation of an agent-oriented programming language with caste as the basic
program unit is on the top of our agenda.

Acknowledgement

The work reported in this paper is supported by China High-Technology R&D Pro-
gramme under the grant 2002AA116070.

CAMLE: A Caste-Centric Agent-Oriented Modelling Language and Environment 161

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Dam, K. H., Winikoff, M., “Comparing Agent-Oriented Methodologies”, Proc. of
AOIS’03, Melbourne, Australia, July 2003.

Zambonelli, F., Jennings, NR and Wooldridge, M., “Developing multiagent systems: the
Gaia Methodology”, ACM TOSEM 12(3), 2003, pp. 317-370.

. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos J. and Perini, A., “TROPOS: An

Agent-Oriented Software Development Methodology”, Journal of Autonomous Agents and
Multi-Agent Systems 8(3), Kluwer Academic Publishers, May 2004, pp. 203 - 236.

. Zhu, H., “Formal Specification of Agent Behaviour through Environment Scenarios”, For-

mal Aspects of Agent-Based Systems, Rash, J.L., et al., (Eds.), Springer, LNCS Vol. 1871,
2001, pp. 263-277.

. Zhu, H., “SLABS: A Formal Specification Language for Agent-Based Systems”, Int. J. of

Software Engineering and Knowledge Engineering 11(5), 2001, pp. 529-558.

. Zhu, H., “The role of caste in formal specification of MAS”, Intelligent Agents: Specifica-

tion, Modelling, and Application, Proc. of PRIMA’0l, Yuan, S-T; Yokoo, M. (Eds.),
LNCS, Vol. 2132, Springer, 2001, pp.1-15.

. Zhu, H., “Formal Specification of Evolutionary Software Agents”, Formal Methods and

Software Engineering, Proc. of ICFEM'2002, George, C. and Miao, H., (Eds.), LNCS, Vol.
2495, Springer, 2002, pp.249~261.

. Shan, L. and Zhu, H., “Analysing and Specifying Scenarios and Agent Behaviours”, Proc.

of IAT’03, Halifax, Canada, Oct. 2003.

. Shan, L. and Zhu, H., “Modelling Cooperative Multi-Agent Systems”, Proc. of the 2nd Int.

Workshop on Grid and Cooperative Computing. Shanghai, China. Dec. 2003.
Drossopoulou, S., Damiani, F., Dezani-Ciancaglini, M. and Giannini, P., “More dynamic
object reclassification: Fickle;”, ACM TOPLAS, 24(2), 2002, pp. 153-191.

Zhu, H., and Lightfoot, D., “Caste: A step beyond object orientation”, Modular Program-
ming Languages, Proc. of JMLC'2003, Boszormenyi, L., & Schojer, P. (eds), LNCS Vol.
2789, Springer, 2003, pp.59-62.

Shen, R., Wang, J. and Zhu, H., “Scenario Mechanism in Agent-Oriented Programming”,
Proc. of APSEC’04, Oct 30-Dec 3, 2004, Busan, Korea, in press.

Odell, J., Parunak, H. V. D. and Fleischer, M., “The Role of Roles”, Journal of Object
Technology 2(1), 2002, pp.39-51.

Barbier, F., Henderson-Sellers, B., Le Parc A. and Bruel J-M., “Formalization of the
Whole-Part Relationship in the Unified Modelling Language”, IEEE TSE 29(5), 2003,
pp-459-470.

Shan, L. and Zhu, H., “Consistency Check in Modeling Multi-Agent Systems”, Proc. of
COMPSAC’04, Hong Kong, IEEE CS, Sept., 2004.

Moukas, A., “Amalthaea: Information Discovery and Filtering Using a Multi-Agent Evolv-
ing Ecosystem”, Journal of Applied Artificial Intelligence, 11(5), 1997, pp.4370457.

Zhu, H., Bin Zhou, B., Mao, X., Shan, L., and Duce, D., “Agent-Oriented Formal Specifi-
cation of Web Services”, Proc. of the AAC-GEVO’04 at GCC’04, LNCS Vol. 3252,
Springer, Oct. 2004.

Burrafato, P. and Cossentino, M., “Designing a Multi-Agent Solution for a Bookstore With
the PASSI Methodology”, Proc. of AOIS’02 at CAiSE'02, May 2002.

Bauer, B., Muller, J.P. and Odell, J., “Agent UML: A Formalism for Specifying Multiagent
Software Systems”, Agent-Oriented Software Engineering, Ciancarini, P. and Wooldridge,
M. (eds.), LNCS, Vol. 1957, Springer, 2001, pp.91-103.

Shan, L. and Zhu, H., “CAMLE: A Caste-Centric Agent Modelling Language and Envi-
ronment”, Proc. of SELMAS’04 at ICSE 2004, Edinburgh, Scotland, UK, May 2004.

A Formal Approach for the Modelling
and Verification of Multiagent Plans
Based on Model Checking and Petri Nets

Hyggo Oliveira de Almeida', Leandro Dias da Silva',
Angelo Perkusich!, and Evandro de Barros Costa?

! Electrical Engineering Department, Federal University of Campina Grande,
Postal Code 10.105 — 58109-970,
Campina Grande, Paraiba, Brazil
{hyggo,1eandro,perkusic}@dee.ufcg.edu.br
2 Information Technology Department, Federal University of Alagoas,
Macei6, Alagoas, Brazil
evandro@tci.ufal.br

Abstract. Multiagent systems are characterized by decentralized control and
agents that perform autonomous actions. The sequence of such actions are gen-
erally described by plans. An important issue in this context is how to verify the
correctness of plans when agents have unpredicted actions. In this paper, formal
modelling and verification guidelines to verify nondeterministic multiagent sys-
tem plans are introduced. The guidelines are based on HCPN modelling, simula-
tion, and model checking. The guidelines are conceptually introduced, and then
applied for a multiagent intelligent tutoring system modelling and verification.

1 Introduction

Multiagent Systems (MAS) have become a promising approach to develop complex
software systems [1]. Usually, the sequence of actions that agents have to execute is
defined by a plan. Planning is the process of generating a plan based on three essential
inputs: an initial state of the world; a set of possible actions that an agent can execute;
and a set of goals to be reached. Application areas of multiagent planning include multi-
robot environments [2], cooperating Internet agents [3], logistics [4], manufacturing
systems [5], and military tasks [6], among others.

In the context of planning, one key issue is how to verify the correctness of multi-
agent plans. Due to the inherent decentralized nature of MAS, agents have only partial
knowledge of the environment, and thus it is difficult to define deterministic choices
based on global information [7]. Usually, agent plans are built without considering un-
controllable and conflicting actions of other agents. Based on such actions and on a
nondeterministic plan, one can define a set of next states instead of only one for the
deterministic case [8]. Therefore, adding flexibility for the plan execution.

However, the generation or verification of nondeterministic plans may lead to the
well known state explosion problem. Thus, there is no single planning algorithm ap-
propriate for all systems of agents. Many plan verification methods are described in the
multiagent literature but they are efficient for some agent systems and inefficient for

R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 162-179, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

A Formal Approach for the Modelling and Verification of Multiagent Plans 163

others. A possible approach to deal with such situation is to adopt efficient techniques
for either plan generation or verification [9].

In this work model checking [10] is used to deal with the complexity associated with
the validation of nondeterministic plans for multiagent systems [11, 12]. Also, tech-
niques, such as simulation and message sequence charts (MSC) [13] have been applied.
In order to efficiently and systematically integrate these techniques, guidelines to model
and verify plans are introduced. Hierarchical Colored Petri Nets (HCPN) [14, 15] are
applied to model multiagent systems. In order to illustrate the use of these guidelines,
the verification of plans for a multiagent intelligent tutoring system is presented.

The remaining of this paper is organized as follows. In Sections 2 and 3, the mod-
elling and verification guidelines are introduced. Section 4 presents the case study based
on a multiagent intelligent tutoring system. The application of the guidelines for the
case study is presented in Section 5. In Section 6 related works are discussed. Finally,
in Section 7 final remarks are presented.

2 Modelling Guidelines

In this section, the guidelines to obtain a Hierarchical Colored Petri Net model for
multiagent systems are presented. As discussed in the introduction, these guidelines
allow a designer to obtain the model needed to apply the verification guidelines that are
introduced in Section 3. In Figure 1 the guidelines are illustrated, and are described as
follows.

Modelling Guideline 1 - Identify Types of Architectures for Agents

Depending on the application domain, a multiagent system may be composed by agents
with different internal architectures [16]. On the other hand, agents implementing the

g0, - -
Internal | A:sltract .] |
i Architect modules an
arcﬁietlg::(taure Arc?;:;e:sture ’;ﬁlo’diiegre 0o functionalities O mx

1:if mod1
2:goto 6
3: if lexists
4: goto 7
5: finish

1: if mod3
2:goto 14
3: if mod5
4: goto 13
5: finish

1: if mod2
2:goto 12
3: if exists
4: goto 6

5: finish

Functional
Scenarios
and plans

Fig. 1. Guidelines for modelling multiagent plans.

164 Hyggo Oliveira de Almeida et al.

same functionalities usually have the same architecture. For instance, consider an infor-
mation retrieval multiagent system. Generally speaking, one such system is composed
by agents with different functionalities, namely: agents for information extraction, fil-
tering, searching, and so on. Thus, the designer must identify different types of archi-
tectures. The result of this guideline is a set of types of architectures for the agents. As
explained latter on, this guideline is necessary in order to verify the plans for different
types of architectures.

Modelling Guideline 2 — Group Functionalities for Agents in Modules
for Each Architecture Type

One major characteristic of the multiagent approach is the independence of the in-
ternal agent development paradigm. In the same way as many software engineering
paradigms, a common approach is to group functionalities into modules. Therefore, the
verification of properties defined for such modules can be performed locally.

If the internal agent architectures previously identified are not constructed based on
amodular based infrastructure, the functionalities of agents must be grouped in modules
for each type of architecture, as defined for the Guideline 1. This is important to build
plans describing high level modules as providers of functionalities. Thus, it is possible
to point out which module or functionality does not satisfy a specific property.

Modelling Guideline 3 — Define Functionalities and Modules for Modelling

In a multiagent system, some features are generally shared by all internal agent architec-
tures. Depending on the properties to be verified, some functionalities can be abstracted
from the model. Examples of such features are related to agent communication, which
can be omitted if there is no security, performance, or protocol-related issues to ver-
ify. In order to make the model more concise and the verification more efficient, the
designer must define which functionalities and modules must be modelled in order to
proceed to the verification guideline.

Modelling Guideline 4 — Define/ldentify Agent Plans

As mentioned before, the sequence of agent actions in multiagent systems are usually
described by plans. If the system being modelled is executed based on agent plans, then
skip this guideline. If there are no plans defined for each agent, build execution sce-
narios. This is necessary to define agent execution algorithms in the first verification
guideline, as detailed in Section 3. In some cases, agents with the same architecture
have also the same plan. Scenarios should be described considering modules and func-
tionalities identified in the previous guideline.

Modelling Guideline 5 — Construct Hierarchical Colored Petri Net Models
Jor Each Agent Architecture

Construct a Hierarchical Colored Petri Net (HCPN) model for each type of architec-
ture previously defined, as discussed for Guideline 1. The most important characteristic
is that the model must capture the internal behavior of the agents, according to their
architecture.

A Formal Approach for the Modelling and Verification of Multiagent Plans 165

After the application of modelling guidelines, an HCPN model for each architecture
and a description for each agent plan is obtained. The models together with the plans are
then used for the verification, according to the guidelines that are explained as follows.

3 Verification Guidelines

A formal model of a system allows its verification before it is built in order to determine
design problems, or can be used to improve an existing one. There are several ways to
analyze a system, such as simulation and model checking, among others. For HCPN
models, the tool set Design/CPN [17] is adopted, in the context of this work, for graph-
ical edition, simulation, automatic generation of Message Sequence Charts (MSC), and
to perform model checking. The simulation gives the designer the insight about the
behavior of the system. The generated MSCs are useful to observe different execution
traces for the models, and abstracting the token game of a Petri net simulation [14].
An MSC automatically generated during a simulation run is then used to define pred-
icates related to the model that are necessary to perform model checking. Thus, these
predicates are used to prove desired properties for a given plan.

It is important to observe that simulation does not guarantee that the system always
behaves as expected, since only one possible execution trace is captured. Therefore it
is necessary to verify the plan for all possible behaviors, or traces. To do so, model
checking is applied. The model checking technique verifies if a model M satisfies a
given specification f, that is denoted as: M = f [10]. In the context of this work
the model is an HCPN, and the specification is a temporal logic formula. The library
ASK/CTL [18] for the Design/CPN is used to perform model checking. The temporal
logic formulae specify the desired scenarios. The model checking is performed on the
state space for the HCPN model, generated using the Design/CPN toolkit, to verify
whether the desired properties are satisfied by the HCPN model or not. In the following
it is discussed how the plans for each HCPN model for an agent is analyzed.

In order to prove the correctness of the plan a set of verification guidelines is de-
fined. These guidelines favor a systematic proof method because the designer can use
the same reasoning for every verification procedure in the context of plan verification
for multiagent systems. In Figure 2 the guidelines are illustrated, and are detailed as
follows.

Verification Guideline 1 — Describe the Overall Execution Plan

Define an abstract description of the behavior of each agent. The idea is to describe the
high level behavior of the agent without considering specific activities. For this guide-
line, what the agent does is defined. An algorithm based notation can be used to describe
the execution plan, as adopted in this work. In some situations this description can be
too complex to be verified at once. Nevertheless, they are useful for the Guideline 2, as
detailed bellow.

Verification Guideline 2 — Identify Specific Plans

The overall execution plan description can then be divided into specific plans for spe-
cific activities. This is a suitable way to verify multiagent plans because it is possible

166 Hyggo Oliveira de Almeida et al.

1]

1: if mod3
2: goto 14
3: if mod5
4: goto 13
5: finish

1:if mod1
2: goto 6
3: if lexists
4:goto 7
5: finish

1: if mod2
2 golo 12 Overall
4 gotos Execution

5: finish Planning

fun se;
fun PD = true;

Qﬂ.g_{]oﬂ eval_node node1;
return := true;
Model Temporal e e

Checking Logic

Fig. 2. Guidelines for the verification of multiagent plans.

to reduce the size of the formulae to be verified. Also, it is easier to find and fix errors
since the specific activities are performed for each module. Thus, making possible to
identify exactly which module is not behaving properly. In the case study presented
in Section 4, the execution plan of an agent can be divided in the specific component
plans. Again, an algorithm based notation is used to describe specific plans.

Verification Guideline 3 — Generate the MSC for the Plans

As said in the beginning of this section the MSC is useful to illustrate the execution
trace in a more intuitive way. Also, usually the Petri net model is a complex model.
Therefore it is necessary to generate the MSC for each specific plan identified on the
previous guideline. These MSCs define the sequence of actions for a given plan and
which modules perform the actions.

Verification Guideline 4 — Specify the MSC in Temporal Logic

Based on the MSC the designer can specify the behavior using temporal logic, in or-
der to prove whether this behavior holds for every possible behavior or not. That is
because the MSC is generated at simulation time, and it covers only one possible path.
The specification is constructed using atomic propositions and temporal modalities and
quantifiers to form temporal logic formulae.

Verification Guideline 5 — Perform Model Checking

The last guideline is to perform model checking to verify whether the model models the
specified properties or not. As said before, the model checking is performed using the
Design/CPN and the library ASK/CTL. First, the state space, that is called occurrence

A Formal Approach for the Modelling and Verification of Multiagent Plans 167

graph, is generated for the model. The occurrence graph is a directed graph that repre-
sents all the possible behaviors of a Petri net model. After that, the model checking is
executed to verify if the specification in temporal logic defined in the previous guideline
is satisfied in the state space. If the specification is satisfied, the plan is proved correct.
Otherwise there can be an error but as the plan is specific for an activity, and the activ-
ities are related to modules, it is straightforward to locate the error source. Moreover it
is possible to use the counterexample to identify exactly for which sequence of actions
the specification is violated [10].

The guidelines 2, 3, 4, and 5 can be performed one-by-one for each plan, or for all
plans before proceeding to the next guideline. When analyzing systems for complex
domains where there are several entities communicating with each other or executing
independently, it is necessary to use several tools. For the verification guidelines defined
in this section, simulation, message sequence charts, and model checking are used in
an organized and systematic way to verify execution plans for agents’ activities. Each
tool is used to solve an specific analysis problem. To know, the MSC is used to identify
exactly what flow, in exactly which place must be analyzed. This is done by simula-
tion. Without the MSC must be difficult to identify the properties because the model is
usually complex. But the simulation follows only one possible path. Therefore it is per-
formed model checking to prove the properties for all possible behaviors. Using these
tools in an integrated way makes the analysis activity easier.

4 Multiagent Intelligent Tutoring System

In this section the architecture of a multiagent intelligent tutoring system is presented.
Such system is based on problem solving cooperative based learning activities, such as
problem resolution, instruction, hints, and explanations. The architecture is based on
the MATHEMA architecture [19] that has been applied in various domains, such as
algebra [19] and musical harmony [20]. In Figure 3 the high-level architecture of the
system is shown, and main actors are:

Teacher Learner

[Interface Agent]

afnininiaiaiagagagagagaiag:

SATA

N [
N
N o |

Fig. 3. High level architecture for the intelligent tutoring system.

168 Hyggo Oliveira de Almeida et al.

— Learner: a human agent involved in a learning activity for a given knowledge do-
main.

— Teacher: a human agent to aid and facilitate the interaction between the learner
and the system.

— SATA (Society of Artificial Tutoring Agents): implements the mechanisms to
promote the successful interaction between the learner and the teacher. The SATA
defines the multiagent intelligent tutoring system.

— Interface agent: promotes the interaction between the learner, the teacher, and the
SATA.

In this section the focus is the architecture for an agent in the SATA. Each agent in
such architecture is composed by three systems: tutoring, social, and distribution. The
social and distribution systems implement the functionalities to promote the interaction
among the agents. These systems are not discussed in this paper. The reader may refer
to [19] for a detailed presentation.

The tutoring system (TS) implements the mechanisms to promote the cooperative
interactions between an agent and the learner during the learning process. It is the “in-
telligent system” of an agent and is composed by the following entities.

Mediator

Mediator implements the interaction mechanisms with the Interface Agent and thus
with the learner. It also selects the suitable reasoner in order to solve the task defined
by the learner.

Reasoners

Reasoners are the components that implement the pedagogic functionalities of the intel-
ligent tutoring system. The reasoners are organized as container modules that compose
the tutoring system of an agent defined for the SATA, such as: tutor module, expert
module and the leaner modelling module. These three modules are explained in the
following.

— Tutor module: reasoners belonging to this module implement the pedagogical in-
teractions with the learner.

Pedagogical tasks manager selects the resources that are available to the learner.

e Problem solver replies to the questions of the learner.

e FEvaluator evaluates the answers given by the users.

e Remediator defines the next system action in order to improve the performance
of the learner based on a cognitive diagnosis.

— Expert module: reasoners that belong to this module implement the subjective
problem evaluation for the learner. Its response is inferred based on production
rules stored in a knowledge base. This functionality is provided by the reasoner
inference engine.

— Leaner modelling module: reasoners that belong to this module are responsible
to acquire, maintain, and represent the individual information about the learners.
Such information are then used to define the best teaching strategy to be applied for
a given learner.

A Formal Approach for the Modelling and Verification of Multiagent Plans 169

e History Manager is responsible for the organization and storing of all peda-
gogical knowledge already demonstrated to the learner.

e Profile Manager is responsible for the management of the learning level for
each learner for a given topic.

e Cognitive Diagnostic is responsible for the definition of the cognitive level of
each learner according to the profile.

Resources Base

Resources base is the module that makes available the pedagogical resources, produc-
tion rules and models for learners. It is composed by the following components. The
Resource Access Manager is responsible to provide access to the resource base and its
repositories. Such repositories are described below.

— pedagogical knowledge: resources such as definitions, examples, exercises, and
hints.

— learner model: information related to the profile of the learner and the resources
already studied.

— knowledge bases: inference rules used by the inference engine to evaluate the an-
swers given by the learner.

5 Applying the Guidelines to the Case Study

5.1 Modelling Guidelines

The application of the modelling guidelines introduced in Section 2 for the case study
described in Section 4 is presented below.

Modelling Guideline 1 — Identifying Types of Agent Architectures That Compose the
Multiagent System. In the ITS case study, all agents described in Section 4 have the
same internal architecture. Thus, there is only one type of architecture. The result of the
application of this guideline is the architecture shown in Figure 4.

Modelling Guideline 2 — Grouping Agent Functionalities in Modules for Each Ar-
chitecture Type Defined in the Previous Guideline. As said before, the architecture of
the agents for the ITS are composed by three systems (tutoring, social and distribution),
which have specific functionalities. Each system are defined as a composition of more
specific modules (See Figure 4). These modules are the result of this guideline.

Modelling Guideline 3 — Abstracting the Modules That Implement Functionalities
Which Are Not Relevant to the Verification. For the ITS case study, modules that im-
plement communication and interaction functionalities are abstracted from the model.
Therefore, only modules of the tutoring system are considered (see Figure 4). The
reader may refer to [21] for a detailed discussion concerning to communication and
interaction modelling and verification of an ITS multiagent system.

170 Hyggo Oliveira de Almeida et al.

4o

Learner
i 5 Interface Agent |
A
_ T | SATA |
Tutoring System l
7
i Mediator
3 = Problem Pedagogical
Reasoners Solver Task Manager
7
(40 Tutor Module m===s==m=m=m==m==== I IE Evaluator Iinemedlator

5h)—6b 5bH 5f

Learner
Modelling
Module

[e] Cognitive
Diagnostic
Profile History
Manager Manager
6d
Expert Module [========n=======1 qEessm=—— Inference
o6n Engine

i

i
; I"i—‘—‘Resource Access Manager ‘
i Resource Bases e —————

Social System Knowledge Learner Pedagogical

Distribution System Bases Model Knowledge

Fig. 4. Functional view for the tutoring system.

Modelling Guideline 4 — Describing a Plan or a Functional Scenario for Agents,
Considering the Modules Previously Defined. In Figure 4, it is illustrated the func-
tional view of an agent taking into account the interactions with other agents and with
the learner. The functional scenario starts when a learner asks to the multiagent intel-
ligent tutoring system for a resource. It can be a definition, an example, an exercise,
a hint, the solution of a proposed problem or the evaluation of an answer for a prob-
lem proposed to learner by the system. Based on this initial state for the scenario the
sequence of events and interactions are discussed in the following.

1. The learner asks the interface agent for a resource of a pedagogical unit.

2. The interface agent selects an agent in the SATA responsible for pedagogical unit
and send the requisition to it. The selected agent is the supervisor agent for the
current actions.

3. The mediator of the agent receives the requisition and selects the reasoner to exe-
cute the requested task.

4. When the learner asks for a problem resolution proposed by him, the reasoner se-
lects a problem solver (see the problem solver box labelled with A in Figure 4) that
executes the following steps:

(a) It divides the problem to be solved into smaller sub-problems.

(b) Solves each sub-problem.

(c) When there are sub-problems it cannot solve, it forwards them to the social
system. The social system allocates other agents to solve them.

A Formal Approach for the Modelling and Verification of Multiagent Plans 171

(d) When all the sub-problems are solved the answer is then returned to the medi-

ator (see step 7).
. If the learner asked for a resource, the selected reasoner is then the pedagogical

tasks manager (label B in Figure 4), and then executes the following steps:
(a) Asks the mediator (D) for the next type of resource to be presented to the

learner according to his cognitive profile.

(b) The mediator asks the profile manager (F) to recover the level of the learner
with respect to the pedagogical unit being studied.

(c) The profile manager asks the history manager (G) for the history of resources
already given to the learner for the current pedagogical unit.

(d) The history manager asks the resources access manager (I) for the list of re-
sources already given by the learner and return it to the history manager, that
returns it to the profile manager.

(e) Based on the learner history, the profile manager defines his quantitative knowl-
edge level, based on the previous scores obtained for the other resources be-
longing to the current pedagogical unit. Then, it returns this score to the reme-
diator.

(f) The remediator gets the quantitative score and forwards it to the cognitive diag-
nostic (E) so that it can identify the qualitative level of the learner with respect
to the current pedagogical unit, such as, for example, basic, intermediary, or
advanced.

(g) The cognitive diagnostic returns the qualitative level of the learner to the reme-
diator, that defines the type of resource to be given to the learner and forwards
them, the level “n” and resource “t”, to the pedagogical tasks manager.

(h) The pedagogical tasks manager asks for a resource “t” and level “n” to the

resources access manager and returns the resource to the mediator (see step 7).
. If the leaner asked for an evaluation of his answer to a problem previously given by

the system (what would occur in step 5) the selected reasoner is evaluator (C), that

thus executes the following steps:

(a) If the problem is an objective one, the evaluator verifies if the correct answer
to the question is the same as the one given by the learner and returns the score
to the mediator (step 7).

(b) In the case that the problem is subjective, it is forwarded to the inference engine
(H) that divides it in smaller parts.

(c) The inference engine then asks to the resources access manager for knowledge
inference rules and tries to validate each part of the solution.

(d) When the parts are validated, the whole solution is then validated. Therefore,
the final score is returned to the evaluator.

(e) If some parts cannot be validated, they are forwarded to the social system, and
then other agents are allocated to evaluate them.

(f) The evaluator then updates the history of the learner and returns the score to
the mediator.

. Based on the answer given to the learner, the mediator forwards it to the interface

agent.

. The interface agent then forwards it to the learner: the resolution of the problem

proposed by the learner, a resource or the evaluation of the answer for a problem

proposed by the system together with the score.

172 Hyggo Oliveira de Almeida et al.

Modelling Guideline 5 — Constructing an HCPN Model for Each Agent Architecture.
The application of this guideline is presented in [21], where the complete Hierarchical
Colored Petri Net model for the ITS case study is presented. In Figure 5, the hierarchy
page for the model is shown. It has been graphically organized to be similar to the
architecture diagram shown in Figure 4 and explained in Section 4, and therefore it is
not detailed.

: " Students2 ~; [][Pime |

1 Send_Task_To_IA

Interface Agent = VR

Ve mm g

Send_To_Mediator

SATA
Tutoring System
Mediator VA
: " .
4 et)
Send_To_PS Send_To_Me Send_To_PTM
Reasoners
Tutoring
Modue A1 | anicc Voo + Recover_Resource
odule o + PedagogicalTaskManager >

.
Pl’°b|e"‘|5°|ver# Request_Next_Resource

S a = =% = = =, Do_Cognitive_Dialogue
Evalualor#1B 'G—A Remedlalor# 'ﬁg -Dialog

Acluallze,History
Send_Recofery_To_PM

Eval_Sub_Answer

Expert Student
Module Modeling
..... {Z....._ Module .
-.Ir:fe_re_n(ielyla_ctzln_etp_ .
. V.
Send_To_RF 'ProflleManagerM .

//
Resource L I!
Base :piicFinder#11 + ¢ HistoryUpDate#8 4 H.storyFmdemo * 1 "ResourceFinder#7

Fig. 5. Hierarchy page for the ITS agent Colored Petri Net Model.

5.2 Verification Guidelines

In the following the guidelines to validate the agent plan represented by model shown
in Figure 5 are applied.

Verification Guideline 1 — Defining the Overall Plan for the Agents. Based on the
functional scenario previously described, an algorithm-like style is used to present the
overall plan for the ITS agents (Algorithm 1).

A Formal Approach for the Modelling and Verification of Multiagent Plans 173

Algorithm 1 Overall Execution Plan.

Verify the learning level of the student
if The desired level has reached then
Go to step 17
else
Define the new step p
end if
if p is an explanation or an example then
Show it
Go to step 15
: else
Show an exercise
: end if
: Receive the answer from student and try to validate it
: Define an score to the exercise according to the validation
: Increment the learning level
: Gotostep 1
: Inform the student that this topic is over and pass the control to another agent

e A U el

e e e e

Verification Guideline 2 — Defining Specific Plans for the Agents. Based on the over-
all plan previously defined, the specific plans for the ITS agents are described below.

Specific Plan 1 — Suppose that the student requests the system to solve some prob-
lem. This is the simplest type of interaction between them. In this case, the system do
not try to verify the learning level of the student, neither to increment it after the end
of the activity. By this request the student is using the system as a problem solver. The
module called Problem Solver processes this request as follows. Every agent has the
knowledge in a specific expertise, and when the problem can be solved by the current
agent, the request is processed. On the other hand, the agent requests a cooperation with
another agent that can solve the problem. In either case, the answer is returned to the
student.

Consider the first order equation 3x/4 + 5x/3 = 10. In order to solve it, an agent
must ask for a cooperation with another agent that knows how to calculate the least
common multiplier between them. This is a simple example that is useful to see how
the system works. Therefore, according to Algorithm 1, the part of the plan to deal with
a problem proposed by the student is show in Algorithm 2. In this plan, the Interface
Agent and the Mediator module are omitted because they are used in all interactions.
Therefore they are implicitly considered, for the sake of simplicity and space limita-
tions.

Specific Plan 2 — Suppose the situation where the student must solve a problem and send
it to system to analyze his answer. In this scenario, the reasoner used is the Evaluator.
In Algorithm 3 the plan for this interaction is specified.

Specific Plan 3 — The last possibility is when the student needs a resource. A resource
can be, for instance, an explanation, or a definition, for example. This is the most com-
plicated plan because several modules are used to execute it. In Algorithm 4, the defini-
tion of this plan is shown. For this algorithm it is used a name convention for modules,

174 Hyggo Oliveira de Almeida et al.

Algorithm 2 Problem Solver Plan.
1: if Problem can be solved locally then
2 Solve it
3: else
4: Ask for cooperation
5: end if
6: Return the result to the student

Algorithm 3 Evaluator Plan.
1: if Problem is objective then
2: Compare the answer with stored result
3 Go to step 13
4: end if
5: Call the Inference Engine module
6: Divide the subjective problem into smaller ones
7: Try to validate each part using inference rules in the resource base
8: if All parts can be validated then
9: Gotostep 13
10: else
11: Ask for cooperation
12: end if
13: Give a score
14: Update the history
15: Return the score to the student

where PTM represents Pedagogical Task Manager, Rem represents Remediator, PM
represents Profile Manager, HM represents History Manager, and CD represents Cog-
nitive Diagnostic.

Verification Guideline 3 — Generating an MSC for Each Specific Plan. In Figure 6 it
is shown the MSC for the problem solver specific plan, that is described in Algorithm 2.

Student Problem solver

 —
Send problem

Solve the
problem

L, Return solution
<

— —

Fig. 6. Execution plan for the problem solver.

Algorithm 3 is quite more complicated then the previous one. Therefore the im-
portance of the use of MSC is clear for this case. The message sequence charts that
represent the plans to analyze subjective and objective problems are shown in Figure 7
and 8, respectively. They are related to the evaluation of the specific plan described in
Algorithm 3.

A Formal Approach for the Modelling and Verification of Multiagent Plans 175

Algorithm 4 Pedagogical Task Manager Plan.
: PTM asks the student level to Rem
: Rem asks the quantitative level to PM
: PM asks the student history to HM
: HM gets the history from the resource base
HM sends history back to PM
: PM define the student profile

PM sends profile back to Rem
Rem asks the qualitative level to CD

9: CD define the next resource and the level
10: CD sends resource and level back to Rem
11: Rem asks the resource to resource base
12: Rem sends the resource back to PTM
13: PTM sends the resource back to student.

0NN R W=

Student Evaluator Inference Engine
Evaluator .
Request Subjective .
Answer d

Validate Subjective

Answer
. Score
al
M Update Student
P History
Score
1 — I—

Fig. 7. Execution plan for the subjective problem evaluation.

Student Evaluator Inference Engine
Evaluator |
Request

Validate Objective
Answer

Update Student
History

<
" Score

— — —

Fig. 8. Execution plan for the objective problem evaluation.

In the case of an objective problem solved by the student, the system must compare
the given answer with the correct answer in order to give the student a score and to
update his history and profile. The same holds for subjective problem. The difference
in this case is that the inference machine must be used in order to apply specific rules
to try to validate the answer.

Finally, the MSC of the plan related to the pedagogical task manager described in
the Algorithm 4 is illustrated in Figure 9.

176 Hyggo Oliveira de Almeida et al.

Profile History Cognitive
Student Task Manager Remediator Manager Manager Diagnostic
 — — — — — —
Student Ask
Request Quantitative |
Level d Ask q
History Ask o
History
GetHistory
, History
<
Define
Profile
|, Profile Ask
h Qualitative
Level '
Define
Resource Resource
_Resource Identifier
" Identifier
GetResource
, Resource
<
 — — — — — —

Fig. 9. Execution plan for the Pedagogical Task Manager.

Verification Guideline 4 — Specifying Temporal Logic Formulae. 1t is used here a
simplified syntax for the propositions and formulae to improve readability. The actual
formulae are more complicated due to the syntactic constructions of ASK/CTL and
could be complicated for a reader not familiar with ASK/CTL to understand it.

The code for the atomic propositions specifying the properties defined for the MSC
shown in Figure 6, is as follows. In this fragment of code PA is the atomic proposition
that abstracts the fact that STUDENT; is sending a problem to the system. In the same
way PB represents the fact that the Problem Solver module has been called. Finally PC
represents that the answer has been sent back to student and the model reached the final
state.

fun PA n=(Mark.Student’List_Task n=(STUDENT 1, [SEND_PROBLEM])) ;
fun PB n=(Mark.ProblemSolver’Solving n = (STUDENT 1,SEND_PROBLEM,AGENT 1)) ;
fun PC n=(Mark.Student’END n=(STUDENT 1)) ;

In the following the code for the formulae is shown. Using the atomic propositions
previously shown, formulal is used to verify that whenever it is possible to have PA
evaluated to true, then eventually PB is also evaluated to true. The same reasoning holds
for formula2.

val formulal = AND(POS(PA), (EV(PB)));
val formula2 = AND (POS(PB), (EV(PC)));

The atomic propositions and formulae are similar for the verification of all plans.
The major difference is related to the marking of the place to predicate, and how many
predicates are necessary to prove the current plan. Therefore, it is not necessary to list
all atomic propositions and formulae for all plan verification. The code for the problem
solver plan verification can be used as an example.

Verification Guideline 5 — Model Checking. The last step is to perform model check-
ing using the model and the atomic propositions and formulae specified in the Guide-

A Formal Approach for the Modelling and Verification of Multiagent Plans 177

line 4 above. In the following the piece of code that implements this step is shown.
The eval node is used to evaluate the truth value for the formulae. Therefore, if both
formulae are evaluated to true then the designer receives a message informing that the
plan has been validated. Otherwise an error message is shown.

bReturnl := eval_node formulal InitNode;
bReturn2 := eval_node formula2 InitNode;
if ((!bReturnl = true) andalso (!bReturn2 = true))

then DSUI_UserAckMessage ("The plan has been validated")
else DSUI_UserAckMessage ("There is a problem with this plan");

For this example the verification for one plan is detailed. Nevertheless, it is im-
portant to point out that the same reasoning strategy can be applied for every plan.
Therefore, using theses guidelines it is possible to specify and verify all the plans for
every activity of the agents.

6 Related Work

Many researchers have applied Petri nets to the multiagent domain. In [22] a Colored
Petri net for a multiagent application, in order to analyze agent social behaviors, is
presented. Agent cooperation and coordination are analyzed using colored petri nets in
[23,24]. An agent oriented programming extension for Colored Petri nets is presented
in [25]. In [26], Recursive Petri Nets are used to model multiagent plans.

In the context of multiagent planning, the model checking approach has been used
to verify plans of the agents based on various formalisms. In [27] it is proposed an
OBDD based planning framework for multiagent and nondeterministic domains. In
[28] is presented an approach for modelling and verifying multiagent behaviors us-
ing Predicate/Transition Nets. In [29] G-net is extended for modelling inheritance of
agent classes in multiagent systems, which provides a clean interface between agents
with asynchronous communication ability and supports formal reasoning.

There are other works and formalisms for multiagent plan modelling and verifica-
tion. However, the approach proposed in this paper gathers various tools, such as MSC,
simulation, and model checking, to provide a systematical way for modelling and ver-
ifying multiagent plans. Design CPN support makes the verification an automatic ac-
tivity, representing an advantage if compared to Predicate/Transition works. Moreover,
guidelines are generic and can be applied to any multiagent domain.

7 Final Remarks

In this paper it is introduced an approach to verify nondeterministic execution plans
for multiagent systems using Hierarchical Colored Petri Nets. This approach is based
on guidelines for the modelling and verification activities. These guidelines are used to
fully implement the presented solution using available computational tools.

In order to illustrate the introduced approach, it has been applied to a multiagent
intelligent tutoring system. Thus, the guidelines have been effectively applied to a real-
istic example. The presentation of the case study was kept simple enough to make the

178 Hyggo Oliveira de Almeida et al.

concepts and the application of the guidelines clear. Moreover, based on the example,
the applicability of the approach has been validated taking into account scalability and
complexity issues. The scalability issue is implicitly treated, since the guidelines intro-
duced are not coupled with the number of agents and the types of architectures that can
be defined. Also, the approach promotes an effective way to manage the state explosion
problem due to the fact that multiagent plans are verified based on local plans for types
of architectures.

As future work automatic generation of plans is currently being investigated. This
is important because for multiagent systems it can be difficult or even impossible to
predict the behavior of all the agents in advance. Moreover, the approach discussed in
this work is being applied to other domains such as, for example, sensor networks and
manufacturing planning.

Acknowledgements

The research reported is this chapter is partially supported by grants 305110/2002-0 and
200365/2004-5 from the Brazilian National Research Council (CNPq), a scholarship
from CNPq for the first author and a scholarship from CAPES for the second author.

References

1. Jennings, N.R.: An Agent-based Approach for Building Complex Software Systems. Com-
mun. ACM 44 (2001) 35-41

2. Ball, D., Wyeth, G.: Multi-Robot Control in Highly Dynamic, Competitive Environments.
In: RoboCup 2003: Robot Soccer World Cup VI. Volume 3020 of Lecture Notes in Computer
Science. Springer-Verlag (2003) 385-396

3. Fernindez, D.C., Lépez, JJM.M., Millan, D.B.: A Multiagent Approach for Electronic Travel
Planning. In: Proceedings of 2nd International Workshop Agent-Oriented Information Sys-
tems/CAiSE’00, Stockholm, Sweden (2000)

4. Henoch, J., Ulrich, H.: Agent-Based Simulation Platform for Evaluating Management Con-
cepts. In: Proceedings of the 4th International Eurosim 2001 Congress, Delft, Netherlands,
TUDelft Press (2001) 1-6

5. Kornienko, S., Kornienko, O., Levi, P.: Flexible Manufacturing Process Planning based on
the Multi-agent Technology. In: Proceedings of 21st the IASTED International Conference
on Applied Informatics, Innsbruck, Austria, ACTA Press (2003) 87-92

6. Upal, M.A., Fung, F.: Dynamic Plan Evaluation for Military Logistics. In: Proceedings of
the Seventh International Conference on Artificial Intelligence and Soft Computing, ACTA
Press (2003) 87-92

7. Xuan, P, Lesser, V.: Using Agent Commitments as Planning Contexts. International Journal
on Cooperative Information Systems (2003, under review)

8. Bowling, M.H., Jensen, R.M., Veloso, M.M.: Multiagent Planning in the Presence of Multi-
ple Goals. In: Intelligent Planning. Intelligent Series. Wiley (2004, to appear)

9. Pistore, M., Traverso, P.: Planning as Model Checking for Extended Goals in Non-
deterministic Domains. In: IJCAI (2001) 479-486

10. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge,
Massachusetts (1999)
11. Giunchiglia, F., Traverso, P.: Planning as Model Checking. In: ECP. (1999) 1-20

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

A Formal Approach for the Modelling and Verification of Multiagent Plans 179

Cimatti, A., Roveri, M.: Conformant Planning via Symbolic Model Checking. In Journal of
Artificial Intelligence Research (JAIR) (2003) 305-338

Harel, D., Kugler, H.: Synthesizing State-Based Object Systems from LSC Specifications.
International Journal of Foundations of Computer Science 13 (2002) 5-51

Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis, Methods and Practical Use.
EACTS — Monographs on Theoretical Computer Science. Springer-Verlag (1992)

Jensen, K.: Coloured Petri Nets — Basic Concepts, Analysis Methods and Practical Use.
Volume 2. Springer-Verlag (1997)

Weiss, G., ed.: Multiagent Systems — A Modern Approach to Distributed Artificial Intelli-
gence. MIT Press (1999)

Jensen, K., al, e.: Design/CPN 4.0. Meta Software Corporation and Department of Computer
Science, University of Aarhus, Denmark. (1999) On-line version:
http://www.daimi.aau.dk/designCPN/.

Christensen, S., Mortensen, K.H.: Design/CPN ASK-CTL Manual, University of Aarhus.
0.9 edn. (1996)

Costa, E.B., Lopes, M.A., Ferneda, E.: MATHEMA: A Learning Environment Based on a
Multi-Agent Architecture. In Wainer, J., Carvalho, A., eds.: Proceedings of the 12th Brazil-
ian Symposium on Artificial Intelligence. Volume 991 of Lecture Notes in Artificial Intelli-
gence., Campinas, Brasil, Springer-Verlag (1995) 141-150

Costa, E., Almeida, H.O., Lima, E.F.A., Filho, R.R.G.N,, Silva, K.S., Assun¢do, FEM.: A Co-
operative Intelligent Tutoring System: The case of Musical Harmony domain. In Coello, C.,
Albornoz, A., Sucar, L., Battistuti, O., eds.: Proceedings of 2nd Mexican International Con-
ference on Artificial Intelligence — MICAI’02. Volume 2313 of Lecture Notes in Artificial
Intelligence., Mérida, Yucatan, México, Springer Verlag (2002) 367-376

Silva, L.D., Almeida, H.O., Perkusich, A., Costa, E.B.: Modelling and Analysis of a Multi-
Agent Intellgent Tutoring System Based on Coloured Petri Nets. In: 1st ACIS International
Conference on Software Engineering Research and Applications (SERA’03). Volume 1., San
Francisco, EUA, Mt. Pleasant: International Association for Computer and Information Sci-
ences (ACIS) (2003) 276-281

Weyns, D., Holvoet, T.: A Coloured Petri Net for a Multi Agent Application. In Moldt, D.,
ed.: Proc. of the Second International Workshop on Modelling of Objects, Components, and
Agents (MOCA’02), Aarhus, Denmark (2002) 121-140

Fiorino, H., Tessier, C.: Agent Cooperation: a Petri Net based Model. In: Proceedings of
ICMAS’98. (1998) 4-7

Miranda, M., Perkusich, A.: Modeling and Analysis of a Multi-Agent System Using Col-
ored Petri Nets. In: Proc. of Workshop on Applications of Petri Nets to Intelligent System
Development, Williamsburg, Virginia, USA (1999) 87-99

Moldt, D., Wienberg, F.: Multi-Agent-Systems based on Coloured Petri Nets. In: Proceed-
ings of the 18th International Conference on Application and Theory of Petri Nets, Springer-
Verlag (1997) 82-101

Seghrouchni, A.E.F., Haddad, S.: A recursive model for distributed planning. In Lesser, V.,
ed.: Proceedings of the First International Conference on Multi-Agent Systems, MIT Press
(1995)

Jensen, R., Veloso, M.: OBDD-based Universal Planning for Multiple Synchronized Agents
in Non-Deterministic Domains. In: Proceedings of the Fifth International Conference on
Artificial Intelligence Planning Systems, Breckenridge, CO (2000) 167-176

Xu, D., Volz, R., loerger, T., Yen, J.: Modeling and Verifying Multi-agent Behaviors using
Predicate/Transition Nets. In: Proceedings of the 14th international conference on Software
engineering and knowledge engineering, ACM Press (2002) 193-200

Xu, H., Shatz, S.M.: A Framework for Modeling Agent-Oriented Software. In: Proceedings
of the 21st International Conference on Distributed Computing Systems (ICDCS). (2001)

Specification of Role-Based Interactions Components
in Multi-agent Systems

Nabil Hameurlain' and Christophe Sibertin-Blanc?

I LIUPPA Laboratory, Avenue de I’Université, BP 1155, 64013 Pau, France
nabil.hameurlain@univ-pau.fr
http://www.univ-pau.fr/~hameur

2 IRIT Laboratory, University Toulouse I, Place Anatole France31042 Toulouse, France
sibertin@univ-tlsel.fr

Abstract. Roles are an important concept used for different purposes as the
modeling of the organizational structure of multi-agent systems, the modeling
of protocols, and as basic building blocks for defining the behavior of agents.
Modeling interactions by roles brings several advantages, the most important of
which is the separation of concerns by distinguishing the agent-level and sys-
tem-level with regard to interaction. However, in open MASs, the composition
of independently developed roles can lead to unexpected emergent interaction
among agents. This paper identifies requirements for modeling role-based in-
teractions, and presents a formal specification model of roles for complex inter-
actions. Our approach aims to integrate specification and verification of roles
into the Component Based Development approach. An interaction protocol ex-
ample is given to illustrate our formal framework.

1 Introduction

The Multi-Agent System (MAS) paradigm is one of the most promising approaches
to create open and dynamic systems, where heterogeneous entities are naturally rep-
resented as interacting autonomous agents, which can enter or leave the system at
will. Interaction among autonomous agents is fundamental to the dynamic of multi-
agent systems. Agents belonging to a same application need to interact and coordinate
their activity to carry out their common global goal, whereas agents belonging to
different applications, as in an open scenario, also need to interact, for instance to
compete for a resource.

If these interactions are uncoordinated, there is no chance that they lead to the
achievement of the common goal, and the role concept is just the one that relates the
interactions performed by agents and the objectives of the system. A role is a specific
contribution to the system that realizes a part of the global goal, and it determines
how this sub-goal may or must be achieved. Thus, roles are basic buildings blocks for
defining the organization of multi-agent systems, together with the behavior of agents
and the requirements on their interactions [18]. Modeling interactions by roles allows
a separation of concerns by distinguishing the agent-level and system-level concerns
with regard to interaction. An important characteristic of real-world agent systems is
that an agent may have to change the role it plays over time. If some flexibility con-
straints require some variety of these roles, agents have to adapt their architecture and
functionality as they adopt new roles. These additional capabilities must be dynami-

R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 180-197, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Specification of Role-Based Interactions Components in Multi-agent Systems 181

cally acquired because only a few roles can be hard-coded into an agent. As a matter
of fact, this dynamic acquisition is the only possibility in open system where agents
enter and leave at will. While designing the overall organization of a system, it is
valuable to reuse roles previously defined for similar applications, especially when
the structure of interaction is complex. To this end, roles must be specified in an ap-
propriate way, since the composition of independently developed roles can lead to the
emergence of unexpected interaction among the agents.

On the other hand, Component Based Development (CBD) [26] promises to facili-
tate the construction of large-scale applications by supporting the composition of
simple building blocks into complex applications. It is one of the most important
among the recent technical initiatives in software engineering. In CBD, software
systems are built by assembling components already developed and prepared for
integration. Therefore, the specification of components is useful to both components
users and components developers. The specification provides a definition of the com-
ponent’s interface and it must be precise and complete for users; for developers, the
specification of a component also provides an abstract definition of its internal struc-
ture. The verification of such a well-established specification is needed for a safe
composition of systems from components. Verification and CBD are synergistic:
CBD introduces compositional structures, and composition rules to build systems,
whereas specification along with verification enable the effective development of
reliable component-based software systems.

It appears that the facilities brought by the CBD approach fit well the issues raised
by the use of roles in MASs, and this paper makes a proposal in this way. It presents
the RICO (Role-based Interactions COmponents) model for specifying complex in-
teractions based on roles in open MAS. Although the concept of role has been ex-
ploited in several approaches [1, 2, 3, 4, 5, 7, 8, 18, 28] in the development of agent-
based applications, no consensus has been reached about what is a role and how it
should be specified and implemented. RICO proposes a specific definition of role,
which is not in contrast with the approaches mentioned above, but is quite simple and
can be exploited in specifications, validations and implementations. In RICO, a role
includes a set of interface elements (either attributes or operations, which are the
provided and required features necessary to accomplish the role’s tasks), a behavior
(interface elements semantics), and properties (proved to be satisfied by the behav-
ior). When an agent intends to take a role, it creates a new component (i.e. an instance
of the component type corresponding to this role) and this role-component is linked
to its base-agent. Then, the role is enacted by the role-component and it interacts with
the role-components of the other agents.

This paper focuses on the integration of specification and verification of roles into
the Component Based Development. Section 2 defines requirements for modeling
role-based interactions as components together with the RICO (Role-based Interac-
tions COmponents) specification model for complex interactions based on roles.
Section 3 presents the formal specification language COO (CoOperative Objects)
[23], together with SYROCO [24] (an acronym for SYsteme Réparti d’Objets
CoOpératifs), an environment that implements COOs. In section 4 we map the pro-
posed RICO specification model to the COO formalism, and specify properties of
role-components. An example of interaction protocol is studied to illustrate our ap-
proach. We present related approaches in section 5 before to conclude in section 6.

182 Nabil Hameurlain and Christophe Sibertin-Blanc

2 Specifying Role-Based Interactions as Components

In the following, first we overview the specifications of software components in
Component Based Software Engineering, and then we present the RICO model for
specifying agent roles in open multi-agent systems, which is a template that can be
instantiated on various concrete computation model. The main objective is to use the
CBD approach for specifying role-based interactions as reusable components [10],
and which can be combined together by matching their respective needs and services.

2.1 Specification of Software Components

Component specification is an important issue in CBD. Although this problem has
been addressed from the very beginning of the development of component models, it
remains one of the challenging problems of Component Based Software Engineering.

Up to now, the specifications of components used in practical software develop-
ment are limited to syntactic specifications. These specifications include the specifi-
cations used with technologies such OMG’s CORBA [20] or Sun’s JavaBeans [25].
The first of these uses different dialects of IDL (Interface Definition Language) [9],
whereas the second uses the Java programming language to specify component inter-
faces. Therefore, the specification of a component consists of a precise definition of
the component’s operations and context dependencies, and an essential feature of
most component specification techniques is the independence of interfaces from the
component implementations.

An important aspect of interface specifications is related to the principle of substi-
tution of components. A component can be substituted if the new component imple-
ments at least the same interfaces as the older component. For substitution of compo-
nents to be safe, however, several techniques try to provide semantics specifications,
and most of them use UML [19] and its Object Constraint Language (OCL) [27].
Thus a component implements a set of interfaces, each of which consists of a set of
operations. In addition, a set of preconditions and postconditions is associated with
each operation, which often depend on the state maintained by the component [17].
Nevertheless this is in general insufficient for the re-usability and extendibility of
components. Instead, the semantics or behavior of a software component has to be
included in its specification, and the safe substitution of components needs to com-
pare their behaviors [10].

2.2 RICO Specification Model

RICO (Role-based Interactions COmponents) is a role-based interactions abstract
model for the specification of roles as components in agent-based applications. The
main motivation for modeling role-based interactions as components is to capture
interaction patterns that:

o feature well-defined and proved properties,

e may be composed the ones with the others so that the resulting behavior allows to
realize an intended goal,

e may be dynamically linked to agent and dissociated when this is no longer neces-
sary,

Specification of Role-Based Interactions Components in Multi-agent Systems 183

Agent
base| 1
n
Property e n
1 Component m
n 1 n n
n 1 implements lient
Behavior
1 provide)
n n require

action n Service

Fig. 1. UML metamodel of the concepts used in RICO specification model.

e ecnable a separation of concerns by distinguishing the agent-level and system-level
with regard to interaction.

The concept of role has been used in several multiagent development methodolo-
gies for modelling and analysing complex system applications. Although there are
several role definitions, in all approaches roles are used to identify some task, behav-
iour, responsibility or operation that should be performed within the system [3]. In
RICO, a role is considered as a component providing a set of interface elements (ei-
ther attributes or operations, which are provided or required features necessary to
accomplish the role’s tasks), a behavior (interface elements semantics), and properties
(proved to be satisfied by the behavior). Figure 1 is a UML class diagram showing
the concepts used in RICO and the relationships between them. This UML meta-
model specifies that a role-component requires and provides some services, which
must be implemented by others role-components, and a service is implemented by
one role-component. This independence of services from the role component imple-
mentations is an essential feature of RICO specification model according to the CBD
approach. Definition 1 gives the explicit definition of the concepts used in RICO.
This model is a generic representation of the relationships between these concepts,
since in practice, the expression of these relationships varies from one specification
technique to another, that is, one can distinguish between object-oriented specifica-
tions and procedural specifications.

In RICO, agents may take up one or several roles simultaneously, and an agent can
assume the same role several times, in the same conversation or in distinct ones. For
the simplicity, and in order to avoid the conflict access to the agent’s resources (for
instance agent’s public attributes), we assume that only one role is active at each
moment in time, and this later is under the agent’s decision [3]. Since we are inter-
ested in specifications and verification of roles, we assume that the relationship be-
tween agent and role is static, that is agents take up roles statically and not dynami-
cally.

184 Nabil Hameurlain and Christophe Sibertin-Blanc

Definition 1. A Role Component for a role R is a n-tuple RC = (Ag, Ref, Serv, Be-
hav, Prop), where:

1. Ag is the identity of the base agent to which RC is linked: Ag has created RC, and
RC enacts the role R on its behalf and under its control.

2. Ref is a list of role component identities, the role components in the system that
RC knows and with which it may interact.

3. Serv is the interface of RC, the set of public features through which it interacts
with the role components registered in Ref. These features are either attributes or
operations, methods according to the standard object-oriented denomination. In
addition Serv’ features are either provided or required. Provided features are
maintained and operated by RC itself at the disposal of other role components;
provided attributes may be read and provided operations may be called. Required
features are features provided by other role components and used by RC; the
proper behavior of RC needs these attributes and operations and thus depends on
their proper behavior. Notice that the interface of a role component forms the ba-
sis for its interaction with the environment (agent holding that role and other role
components).

4. Behav defines the behavior of RC with regard to the other role components of the
system. It describes the life-cycle of RC and the sequences of observable actions
supported by RC as either the caller of a required operation or the callee of a pro-
vided operation; defining Behav in this way assumes that there is no constraint on
the access to public attributes; if not, the availability of these attributes must also
be specified in any manner. Serv together with Behav may be considered as the
functional specification of RC, Behav being a language defined on the operations
of Serv, and concerns the Serv’s elements by capturing their precise behavior. For
instance, the semantics may be specified by using pre- and post-condition associa-
tions, describing namely the life-cycle of the role component: sequence, synchro-
nization, and concurrency of operations. Notice that the definition of a role com-
ponent may also be completed with the mention of private attributes and
operations and Behav may includes unobservable actions (private operations), and
therefore encapsulates the implementation of the component.

5. Prop is a set of behavioral properties that are proved to be satisfied by Behav, so
that components requiring the services provided by RC can trust in their fulfill-
ment. Safety and liveness properties are of specific interest [15]: safety properties
are invariants that states “nothing bad happens”. In contrast, liveness properties
state “something good happens”. They are a functional specification of RC that is
more abstract than Behav, more declarative in that they are just statements of
properties that are guaranteed to be fulfilled by RC in any case. Role’s functional
properties are useful for selecting a role component and for assessing its suitabil-
ity, usability or reuse, relative to a given application.

The execution semantics of the Role Components is defined as follows: when an
agent executes, if the agent has taken up one or several roles, then at any moment
exactly one RC executes (interleaving semantics). Role Components interacts with
each other through the call of provided operations. Messages input or output by RC
are consumed or generated by Behav through the interface Serv of the Role Compo-
nent. Role Components allow a proper means for modelling agents and complex
interactions, since:

Specification of Role-Based Interactions Components in Multi-agent Systems 185

e Roles components are reactive, proactive, and autonomous: through their inter-
face, reactivity is dealt with by operations and services provided, proactiveness is
dealt with by services required, and finally a role component execute autono-
mously according to its behavior Behav, which can be non deterministic. Thus
role components can be used as agent-building blocks.

e Considering role components as the active members of protocols facilitates the
modeling of the behavior of complex interaction protocols, especially open and
concurrent ones. Thus, an agent can play one or more roles at the same time in
different conversations (protocols occurrences), and each participation is managed
by a specific role component.

In this paper we are interested in an object-oriented specification and implementa-
tion of the RICO model. We focus on the specification of these role components, and
their implementation by a concurrent formal object-oriented language, the Coopera-
tive Object (COO) formalism. With respect to the specification and design, we have a
similar view as, for example, the Gaia methodology [28], and the main focus of this
paper is the specification, verification and the implementation of roles.

3 The CoOperative Objects Formalism

In this section we present the COO formalism, a fully concurrent object-oriented
formal specifications language, and its implementation SYROCO, together with an
example of interaction protocols.

3.1 COO Definition

CoOperative Objects (COO) [23] is a formal specifications language allowing to
model a system as a collection of active objects cooperating through an asynchronous
request / reply protocol. Each object, being an instance of its COO class, has an iden-
tity usable as a reference, and may be dynamically created and deleted.

The structure of a COO includes a set of attributes, a set of operations, a control
structure net called its OBCS (Object Control Structure), and a set of services sup-
ported by this OBCS. The definition of a COO class is divided into two parts, (see an
example in section 3.2): the specification part concerns the public provided items
composing the interface, while the implementation part includes the private items,
notably the OBCS, a Petri net with objects [16] defining its control structure. Services
are public provided methods — with typed in- and out-parameters — and service re-
quests are processed according to the state of the OBCS.

The OBCS of a COQ is a high-level Petri net made of transitions, places and arcs,
each of them labeled with inscriptions referring to the processed data. Places are state
variables whose values (multi-sets of tokens referred to as their marking) determine
the current state of the object. Transitions correspond to actions that the object is able
to perform, and the occurrence of a transition produces a change in the net’s marking.
Arcs from places to a transition determine the enabling condition of the transition,
while arcs from a transition to places determine the result of its occurrence; the vari-
ables labeling arcs surrounding a transition are formal parameters defining how a
transition occurrence moves tokens from input to output places. In addition, the value

186 Nabil Hameurlain and Christophe Sibertin-Blanc

of the tokens linked to these variables at an occurrence of the transition, can be ac-
counted for by means of a guard and processed by means of a piece of code, the tran-
sition’s action. The action of a transition — written in any sequential object-oriented
programming language — has access to the attributes and operations of the object as
well as to the public attributes and services of other objects.

Some arcs feature a particular shape with the following semantics:

— Inhibitor arc, with a circle on the transition side: the transition is enabled only if
the place contains no token (transition t2 in figure 2);

— Place-to-transition clearing arc, with a double arrowhead: each occurrence of the
transition removes all the tokens from the input place. An integer value labeling
the arc indicates the minimum number of tokens necessary to enable the transition
(transition t1 in figure 2).

In this paper, we consider services just with a message sending semantics instead
of the full asynchronous request—reply semantics. Each provided service is associated
with transitions which process the receipt of requests for that service (accept-
transition), shown by a pending input arc labeled by the service’s in-parameters.
Thus, a request for a service is processed by occurrences of transitions in the course
of the execution of the OBCS, and it is processed in different way according to the
accept-transition that takes the request-token. From the client side, a request for a
required service is issued by a request-transition. It is distinguished by a pending
output arc labeled by the service’s actual parameter and its occurrence gives a token
to the accept-transitions of the requested service.

The activity of a COO instance consists in processing the calls for its provided op-
erations upon request, and in executing its OBCS as a background task: while transi-
tions are enabled under the current marking, it selects one of them and makes it occur.

The global behavior of a COO system results from the concurrent execution of its
constitutive objects. Usually, we need to compose their OBCS for the analysis; this
composition is in asynchronous way according to the message sending semantics of
service rendering: given a client COO and a server COO, the composition of their
OBCS consists in connecting, through communication places, the request-transitions
and the accept-transitions for the same service: each provided service goes with an
entry-place for receiving the requests. Then, a Client is connected with the service
provider through this communication place by an arc from each request-transition
towards the suitable entry-place and an arc from the suitable entry-place towards each
accept-transition of the service.

The COO formalism is supported by SYROCO [24], an environment that makes it
possible to edit COO class and to generate a C++ class for each COO class, for se-
quential computing environments (interleaving semantics among objects), for envi-
ronments supporting threads and also for distributed computing environments com-
pliant with CORBA (true parallelism semantics among objects). SYROCO offers
symbolic debugging facilities allowing the designer to examine the state of the OBCS
[24], that is the sate of the object (history of transitions occurrence, the previous and
the next transition occurrence, value of tokens...). This debugger does not deal with
the code of actions, but with the behavior and cooperation among Objects. Each COO
has it own debugger, and it is possible to call the debugger of any object from the
debugger of another one.

Specification of Role-Based Interactions Components in Multi-agent Systems 187

3.2 An Application Example

To illustrate the COO formalism, we will study an example of interaction protocols,
the fish-market auction protocol. In [11], authors show how to model this protocol by
means of a COO class. In this paper, we show how to design the COO classes that
model the two roles, that is, the Vendor and Buyer roles. In any conversation follow-
ing the rules of this protocol, we have a single vendor, and a number of potential
buyers, the bidders. The vendor has a bucket of fish to sell for an initial price. A
buyer can make a bid to signal its interest. If no (or more than one) buyer is inter-
ested, the vendor announces a new lower (or higher) price. When one and only one
buyer is interested, the vendor attributes fish to that bidder. Once the bucket of fish is
attributed, the vendor gives the fish and receives the payment, while the buyer pays
the price and receives the fish.

First, let us consider the fm_Vendor class; figure 2 gives its specification and im-
plementation as a CoOperative Object class. The behavior (Control structure) of this
class is as follows: under the initial marking (one token in the price place), only the
t2 and t3 transitions are enabled and may occur. They are respectively the request-
transition and accept-transition of the to_announce and to_lbid services, and the
vendor may process only these services. The acceptance of a to_bid service (by
transition t3) produces new token into the bid place; the transition t3 remains en-
abled as long as there is a token in the price place, that is until an occurrence of the
t4 transition caused by a request for the to_attribute service. This service is
accepted if there is exactly one token in the bid place, that is there is a single current
bidder. The occurrence of t4 returns OK to the buyer, and enables both the request-
transition t5 of the to_give, and the request-transition t6 of the rep_bid ser-
vices. The occurrence of the t6 transition returns Ok to the buyer, and the occurrence
of to_give service enables the accept-transition t7 of the to_pay service. The
final state of the conversation is reached since the marking of the OBCS becomes the
initial one, that is one token in the price place.

In figure 3, we give the fm_Buyer class. The behavior of this class is as follows:
under the initial marking (one token in the portfolio place), only the t1 transi-
tion is enabled and may occur. It is an accept-transition of the to_announce ser-
vice. The acceptance of the to_announce service produces an occurrence of the
t6 transition that requests the to_bid service. Then, transition t2 accepts the
rep_bid service from the vendor and receives the Res reply. If the value of Res is
true, it produces a new token into the attribute place, and enables the accept-
transition of the to_attribute service; thus the occurrence of the
to_attribute service enables t4, a request-transition of the to_pay service.
The rendering of the to_pay service enables the accept-transition t5 of the
to_give service. Otherwise, if the value of RES is false it produces a token into the
announce place, and the buyer should wait for a new announce from the vendor.
The final state of the conversation is reached since the marking of the OBCS becomes
the initial one, that is one token in the portfolio place, and one token in the an -
nounce place.

188

Nabil Hameurlain and Christophe Sibertin-Blanc

clasg fm Vendor specification;
attributes

bidders: list of agent*;
vendor: agent*;
operations
Bidder ident({):agent* ig <..>;
Bidder num() :integer ig <...>;
Current price(): Currency is <..
~Vender () is <...>;

Services

to bid();
to payl(p: Currency): Status;

to announce (newp: Currency) ;
to attribute();

to give(f: figh];
rep bid(reply: Boolean) ;
end.

class fm Vendor implementation;
attributes
current-price: Currency;

Vendor (vendor:agent*, p:Currency) :

//list of bidder agents
//the creator agent

//the C++ code of operations is not shown

/fidentity of final bidder
//ourrent number of bidders
L= //current price of auction

Vendor * is <...>;

// service provided

//receive a bid
//receive a payment

// services required

//send the new price

//reply to a received bid

OBCS
mnggf,, |
) p\\\
hc i 9—|
ldp newp —)—l L
T
Sl LO_dnnounce YZ[o hid ‘ 7 ‘
1
— I
d Z*Peq--_--,"
15 |
fto_gre
= NERCE
— .
t8 op b
o rcq
No -
——
QK
end.

Fig. 2. The Vendor role in the fish-market protocol as a COO class, fm_Vendor.

Specification of Role-Based Interactions Components in Multi-agent Systems

class fm Buyer specification;

attributes

bidder: agent*;
vendor: agent*;
other bidders: list of agentx;

operations

Vendor-ident |
{
1)

Current-pr
~Buyer {)

i
ice():
is <...

//the creator agent
//the vendor agent

//C++ code of operations not shown

: Agent* is <..>; J/identity of vendor

Currency is <...>; //current price of auction
>

Buyer (bidder: agent*, portfolio: Currency): Buyer* 1is <...>;

services

to bid();

// service required

to_pay(p: Currency): Status;
// services provided
to_announce (newp: Currency);
to_attributel();

to give(f:

fish};

rep bid{reply: Boolean];

end.

class fm Buyer implementation;

attributes

portfolio: Currency;
current-price: Currency;

QECS

end,

announce

punfulw_j\!}

L

newp

Fig. 3. The Buyer role in the fish-market protocol as a COO class, fm_Buyer.

189

190 Nabil Hameurlain and Christophe Sibertin-Blanc

4 Implementation of RICO Model as COO

In this section we show how to map the proposed RICO specification model to the
COO formalism, together with some characteristic properties, and give some safety
and liveness property of role components and their verification.

4.1 Mapping RICO Model to COO

The mapping of RICO model to COO consists in modeling Role Components as
COQO classes, both at the instance and type levels. Referring to definition 1 of a Role
Component RC, we have:

e Ag and Ref are registered in attributes, either in the specification or in the imple-
mentation according to visibility considerations.

e The provided features are exactly the element declared in the specification part;
concerning the required features, services are the ones attached to the request-
transitions of the OBCS such as e.g. the services to_bid and to_pay of transi-
tions t6 and t4 in Figure 3, while attributes and operations can be explicitly
listed as comment.

e The behavior of RC is defined by its OBCS that rigorously determines (1) when a
reception of a request for a provided service can be taken into account and
processed by an accept-transition occurrence and (2) when a request for a required
service is issued by a request-transition occurrence. The capabilities and the needs
wrt to message receptions and sending are thus formally expressed by the RC’s
OBCS. Other interactions among role components are never constraining and thus
have no effect on their respective behaviors, that is: public attributes are continu-
ously readable and calls for operations are synchronously processed upon request.

e The behavioral properties are properties of the OBCS and their technical state-
ment may follow a variety of expressions, some are given below.

As mentioned by Kristensen [14], the concept of roles in object-oriented modeling,
should support a set of characteristic properties; the specification and the implementa-
tion of RICO model as COO support these properties as follows:

e Visibility/ Dependency: visibility is supported by distinguishing a specification
part concerning public items of the interface (operations and services), and im-
plementation part concerning private items, notably the OBCS. Dependency is
supported by the fact that the existence of a Role Component depends on that of
the agent playing this role.

e Identity/ Dynamicity: supported by the fact that each role component as COO,
being an instance of its COO class, has its own identity that can be used as refer-
ence, and may be dynamically created and deleted by the agent playing this role.

e Multiplicity/ Abstractivity: supported by the fact that the role components are
mapped to COO classes, distinguishing between Role Components on instance
and type level. Thus, several instances of role components may exist for a role at
the same time.

Clearly the COO language is not the only way to implement the RICO model,
RICO can be supported by any language allowing to explicitly:

Specification of Role-Based Interactions Components in Multi-agent Systems 191

— identify and characterize elementary interactions (for Serv);

— describe formally a control structure for Behav;

— have operational semantics in order to deduce more easily an executable
implementation from the specifications;

— have compositional semantics in order to deduce emergent interaction among
Role Components.

For instance, the type of automatons shown in figure 4 and 5 (section 4.2), could
be used to describe the behavior of fm_vendor and fm_buyer classes. The main ad-
vantages to use petri nets is that they are completely compositional, that is the com-
position of the OBCSs (for different roles components) is also an OBCS, even if role
components enter and leave the conversations at will [23]; while the definition and
the semantics of communicating automatons are more difficult than those of simple
automatons, and structural modification of the system (e.g. create, insert and delete an
automaton) are more difficult to be taken into account. This mechanism of composi-
tion is essential to verify properties related to emergent behaviour when indepen-
dently developed components roles are put in interaction: the properties of the system
are deduced from the properties of its components.

4.2 Safety and Liveness Properties of Role Components

Since the life-cycle of role components is modeled by means of Petri nets, two kinds
of properties should be verified [16]: structural property which are related to Petri
nets topology. These kinds of properties help designer to build correct specification
of the role, independent of the number of agents, and resources; and behavioral prop-
erties, that depend on the fixed initial state, and concern qualitative behavior. In this
paper, we are interested in safety and liveness behavioral properties of roles and their
verification.

Usually, it is possible to generate the reachability graph of the Petri net [16], using
tools such as INA [22]. The reachability graph shows all the reachable states and all
the sequences of transitions occurrences that may be performed. If the reachability
graph is infinite, due to the infinity of a domain value, or to the fact that an action can
be repeated again and again (for instance, transition t3 of to_bid service in the
Vendor component, figure 2), the covering graph is generated instead; it is finite, and
allows the analysis of some safety and liveness properties of the net too.

Safety Properties. Safety properties of roles are requirements on finite execution.
That is, statements of the form “nothing bad happens”. For instance, a specific attri-
bute in a role component is always initialized before this role is taken by an agent. In
the Fish-market protocol example, the identity and the initial price of the fish must be
fixed by the agent taking the Vendor role (agent who initiates the protocol), that is
attributes {vendor, current-price} are not null. These properties can be specified by
means of predicates, expressed over the variables listed in the interface of RC. Safety
properties express requirements which refer not only to several such status fields at
once, but also to a history of states. For instance, using the covering graph of the
fm_Vendor’s OBCS shown in Figure 4 (the symbols ! and ? are used to indicate re-
spectively the required and provide services), we technically verify requirements that
can be worded in the following way:

192 Nabil Hameurlain and Christophe Sibertin-Blanc

7to_pay lto_give

lto_attribute

Ito_announce Irep_bid

?to_bid
Irep_bid

%o _bid

Fig. 4. The covering graph of the Vendor in the fish market protocol.

e “to_announce service may be performed from the initial state or, if, since its
previous occurrence, no or more than one to_bid service has been performed”.

e “to_attribute service may be performed exactly once when, since the previ-
ous to_announce occurrence, a single to_bid intervention has been per-
formed.

e “to_give” and “to_pay” may be performed only once.

In addition to this classical behavioral analysis, the flexibility and the openness of
SYROCO allow to add to the definition of a COO class new attributes to extend the
structure of the tokens of any place of the OBCS, and to integrate new methods (func-
tions) to be executed at each occurrence of transitions, namely when the interpreter of
the OBCS removes tokens (from) or adds (into) the places. Besides, it is always pos-
sible to add, in the modeling of a COO class, transitions or places whose roles are not
functional but only for supervising and detecting particular situations, and namely to
be used to check safety properties of the Role Component .

Liveness Properties. As mentioned above, safety properties are a very powerful way
to guarantee the correctness of a role by verifying that it never reaches an erroneous
state. Sometimes this is not enough, and we need to claim that “something good even-
tually happens”. This is the aim of the liveness properties. These subtle properties
require checking for specific cycles in the reachability graph. So, a liveness property
is violated if there is an infinite execution (trace) where progress is not guaranteed;
usually, this means that some actions can be repeated infinitely, and the same states of
the Role Component are visited again and again. In our example, the analysis of the
fm_Vendor’s OBCS, tells us that the initial state of the Vendor can be reproduced,
and since the initial marking represents the state where there is no ongoing (active)
conversation, this reversible property proves that every conversation can be eventu-
ally completed and finished. Besides, by exploring the reachability graph of the
fm_Buyer’s OBCS shown in Figure 5, we can verify requirements such as:
e “aftera to_attribute intervention, to_pay intervention may be performed”.
e “after a to_pay intervention, to_give intervention may be performed”.

To further prove additional behavioral properties of roles, INA tool also provides
some state-based model checking capabilities, and allows us to state properties in the

Specification of Role-Based Interactions Components in Multi-agent Systems 193

to_give !'to_pay

?to_announce ?to_attribute

7rep_bid >@

Fig. 5. The reachability graph of the Buyer in the fish market protocol.

lto_bid

O ©

form of CTL formulae [6]. These formulas are defined on the marking of places; so
we can specify and verify some key temporal properties about roles on the whole
reachability graph of the Vendor--Buyer OBCS, the Petri net with Objects obtained
by the composition of the OBCS of the fm_Buyer and fm_Vendor classes according
to the message sending semantics. For instance:

e Mutual exclusion, which is a safety property: for instance in the Vendor-
component, no more than one buyer is selected to attribute the fish; it is expressed
by the fact that it is impossible to mark both places bid and attribute at the
same time. This property is expressed by:

EF (Vendor.bid & Vendor.attribute)
that results in FALSE if it is impossible to mark both places announce and at-
tribute at the same time.

e Concurrency between role components, which is a liveness property: for instance
there exists a path in the reachability graph of the Vendor/Buyer_OBCS, in which
the price place (in fm_Vendor’s OBCS), and the bid place (in fm_Buyer’s
OBCS) are marked at the same time, and then, to_announce and to_bid
services, may be executed concurrently. This property is expressed by the holding
of the following formula: EF (Vendor.price & Buyer.bid).

5 Related Work

There are many approaches and methodologies for the specification of roles (interac-
tions) in multi-agents system. In recent years, roles formation, configuration among
roles, and static semantics of roles have been proposed [2, 7]. [7] proposes a meta-
model to define models of organizations, based on three concepts: agent, group, and
role; agents belong to groups where they hold roles, and interactions take place only
between agents member of the same group and according to their respective roles.
Our approach is in the same line, since it is based on roles, and the agents that hold a
role in the same conversation of a protocol constitute a group. However, our approach
gives a formal and precise definition of the interaction patterns — protocols and roles
— and groups are defined on the basis of conversations, i.e. occurrences of protocols.
In [2], authors study the conditions under which an agent can enact a role and what it
means for an agent to enact a role. They define possible relations between roles and

194 Nabil Hameurlain and Christophe Sibertin-Blanc

agents, and discuss functional changes that an agent must undergo when it enters an
open agent system. This work completes our approach, and one can use the proposed
relations as constraints interaction requirements that the agents that take up the role
must meet. In [3], they argue for the importance of enactment/deactement of roles by
agents in multiagent programming, in particular when dealing with open systems.
This work study the dynamics of roles in terms of operations performed by agents;
their formalization is conceptually based on the notion of cognitive agents, and there-
fore, we claim that it can be easily exploited in our specification and implementation
of role components. In [28], Gaia methodology adopts an abstract, semiformal de-
scription to express the capabilities and expected behaviors of roles involved in pro-
tocols. This work is close to ours, since it is based on the organizational abstractions
for analysis and design of complex and open interactions, but one possible limitation,
is the formal specification, validation and namely the implementation of roles. This is
due to the fact that, the life-cycle of roles in Gaia is only expressed by safety and
liveness properties, and this methodology does not directly deals with formal analysis
and implementation issues.

The Aspect Oriented Programming (AOP) approach has been exploited to imple-
ment the concept of roles in [12]. The author discusses the relevance of modeling
roles for agents systems. In our approach, roles are considered as components for the
interactions between agent’s applications. Then, a Role can be selected and reused,
considering not only its functionality but also its behavioral properties. In [5], the
authors go beyond these AOP’s considerations, and propose an interaction model
based on the notion of XRole (XML Role), where notations based on XML are
adopted to support the definition and the exploitation of roles at different phases of
the application development. This work is close to ours, since it is based on the sepa-
ration of concerns introduced by AOP, but it suffers from the lack of a formal seman-
tics and as a consequence the possibility to make verification and validation. Thanks
to their XML-based syntactic definition, XRole focuses on flexibility, openness, and
adaptability of the roles, but not on their formal specification and verification.

Considering the specification and validation of complex interactions and open
software systems, [13] proposes an extension of AUML for the modular design of
interaction protocols by composing micro-protocols; the main contribution of this
approach is to reduce the gap between informal specification of interaction and semi-
formal one by using protocol diagrams (AUML sequence diagrams), a graphical
language for designing protocols. Nevertheless, specification and verification of open
interaction protocols remains non trivial process. In [4], authors develop a role con-
cept for a modeling approach based on the UML and graph transformation systems.
They also provide a run-time semantics for roles on concepts from the theory of
graph transformation. This approach allows a convenient model for the concurrency,
reactivity, and the autonomy of agents. Nevertheless, engineering issues raised related
to the use of roles such as the validation and the verification of agent’s behavior. In
[1], the specification of the MAS is based on a hierarchy of components, defined in
term of input/output and temporal constraints. The proposed framework is developed
for specification and simulation of MAS. However, the approach has two drawbacks.
First, with this approach it seems difficult to refine specifications to implementation
language. Second, the verification technique is limited to model checking. [21] pro-
poses a formal framework using the Z language, where initial units (schemas) of

Specification of Role-Based Interactions Components in Multi-agent Systems 195

specifications are refined in order to obtain a MAS specification. Nevertheless, this
framework does not allow to specify temporal and reactive properties of MAS. In our
model these aspects are specified by the behaviour and the properties of the Role
Components. [8] proposes a multi-formalism based specification approach, including
statecharts in Object-Z classes and proposes a formal framework approach for the
prototyping and simulation of MAS. Although this approach allows specification and
simulation, it has some limitations. Indeed, the Object-Z part of the specification is
not yet executable, and only the analysis by simulation of the statechart specifications
is possible.

6 Conclusion and Future Work

The aim of this paper is to show how to exploit the concept of role in engineering
agent complex interactions (specification, verification, and implementation). Model-
ing interactions by roles gives several advantages, the most important of which is the
separation of concerns by distinguishing the agent-level and system-level with regard
to interaction.

Component Based Development (CBD) promises to facilitate the construction of
large-scale applications by supporting the composition of simple building blocks into
complex applications. Software systems are built by assembling components already
developed and prepared for integration.

Starting from the above considerations, we have identified requirements for
modeling roles-based interactions as components, and propose RICO (Role-based
Interactions COmponents), a role-based interactions specification model whose aims
is to specify roles in agent-based applications according to component based
approach. Then, we have shown how RICO model can been specified and imple-
mented by a concurrent formal object-oriented language, the CoOperative Object
(COO) formalism, that enables the formal specification, analysis and validation of
open and concurrent interactions. Finally, we have shown how to specify and check
properties of a role component exploiting Petri nets theory: reachability graphs for
behavioral analysis, and namely others tools such as INA tool for checking temporal
properties.

The next step for this work is to exploit some directions. First, we want to adapt
SYROCO environment in order to develop an infrastructure supporting RICO model
for real size applications, and namely for open and concurrent interaction protocols.
Our intention is to explore the coordination model based on Moderators of conversa-
tion presented in [11]. This model fits the organization-centered view of MAS as it
strictly distinguishes the agent-level and the organization-level concerns with regard
to interaction, and the main advantage of this approach is that it is quite simple, both
to use and to implement. Second, we are exploring the formal specifications of the
relationships between role components and organizational rules [28] such as com-
patibility and consistency between agents and roles, and interdependence of roles.
Finally, we are going to consider non-functional properties in the specification of role
components, such as performance, reliability, security, and environmental assump-
tions; the specification of non-functional properties is still an open area of research in
Component Based Software Engineering, and we believe that it will have an impact
on the future of software role components specification.

196 Nabil Hameurlain and Christophe Sibertin-Blanc

Acknowledgments

This work is funded by the STIC-CNRS Department, under the grant SUB/2003/
076/DR16, in the context of C2ECL (Coordination et Contréle de 1I’Execution de
Composants Logiciels) action.

References

1. F. M. T. Brazier, B. Dunin Keplicz, N. Jennings, J. Treur, “Desire: Modelling Multi-agent
Systems in a Compositional Formal Framework”, International Journal of Cooperative In-
formation Systems, 6:67-94, 1997.

2. M. Dastani, V. Dignum, F. Dignum, “Role Assignment in Open Agent Societies”,
AAMAS’03, ACM 2003.

3. M. Dastani, M. B. van Riemsdijk, J.Huslstijn, F. Dignum, J-J. Meyer, “Enacting and De-
acting Roles in Agent Programming”, AOSE’04.

4. R. Depke, R.Heckel, J.M.Kuster, “Roles in Agent-Oriented Modeling”, International Jour-
nal of Software engineering and Knowledge engineering, vol 11, No. 3 (2001) 281-302.

5. G. Cabri, L. Leonardi, F. Zambonelli “BRAIN: a Framework for Flexible Role-based In-
teractions in Multi-agent Systems”, Proceedings of CooplS 2003, 2003.

6. E. M. Clarke, E.A. Emerson, A. P. Sistla, “Automatic Verification of finite-State Concur-
rent Systems using Temporal Logic Specifications”, ACM Transactions on Programming
Languages and Systems, Vol 8, N° 2, 1986, pp244-263.

7. J. Ferber, O. Gutknecht, “Aalaadin: A Meta-model for the Analysis and Design of Organi-
zations in Multiagent system”, ICMAS’98, 1998.

8. P. Gruer, V. Hilaire, A. Koukam, “Formal Specification and Verification of Multi-agent
Systems”, ICMAS’2000, IEEE, 2000.

9. M. Gudgin, “Essential IDL: Interface Design for COM”, Reading, MA, Addison-Wesley,
2001.

10. N. Hameurlain, “Formal Semantics for Behavioural Substitutability of Agent Components:
Application to Interaction Protocols”, From Theory to Practice in Multi-agent Systems,
LNAI 2296, Springer-Verlag, pp 131-140, 2002.

11. C. Hanachi, C. Sibertin-Blanc, “Protocol Moderators as Active Middle-Agents in Multi-
Agent Systems”, AAMAS, 8, 3, p. 131-164, Kluwer Academic Publishers, 2004.

12. E. A. Kendall, “Role Modelling for Agent Systems Analysis, Design and Implementation”,
IEEE Concurrency, 8(2): 34-41, April-June 2000.

13. J-L. Koning, M-P. Huget, J. Wei, X. Wang. Extended Modeling Languages for Interaction
Protocol Design. AOSE2001, Springer-Verlag, pp 93-100, 2001

14. B.B. Kiristensen, “Object Oriented Modeling with Roles”, in Proc. 2nd International Con-
ference on Object-Oriented Information Systems (OOIS’95), pp 57-71, Springer .

15. Z. Manna, A. Pnueli, “Temporal Verification of Reactive Systems-Safety”, Springer-
Verlag, 1995.

16. T. Murata, "Petri Nets: Properties, Analysis and Applications", In Proceedings of the IEEE,
Vol.77, No.4 pp.541-580, April, 1989.

17. B. Meyer, “Object-Oriented software Construction”, Upper Saddle River, NJ, Prentice
Hall, 1997.

18. J. Odell, H. V. .D . Parunak, S. Brueckner, J. Sauter, “Temporal Aspects of Dynamic Role
Assignment”, AOSE’03, Springer. 2003.

19. OMG, “OMG Unified Modeling Language specifications”, Report V1.3, OMG, June 1999.

20. OMG, “The Common Object Request Broker: Architecture and Specifications”, Report
V2.4, OMG, 2000.

21. M. Luck, M. d’Inverno, “A formal Framework for Agency and Autonomy”, ICMAS’95,
AAAI Press/MIT Press, editor.

22

23.

24.

25.

26.

217.

28.

Specification of Role-Based Interactions Components in Multi-agent Systems 197

S. Roch, P. H. Starke, “INA: Integrated Net Analyzer, Version 2.2”, Humboldt-Universitat
of Berlin, April 1999.

C. Sibertin-Blanc, “CoOperative Objects: Principles, Use and Implementation”, In Petri
Nets and Object Orientation, G. Agha, F. De Cindio eds, LNCS 2001, Springer-Verlag.
2001.

C. Sibertin-Blanc et Al., “SYROCO: Reference Manual V7”, University Toulousel, Oct
1996, (C) 1995, 97, CNET and University Toulouse 1.

Available at http://www.daimi.aau.dk/PetriNet/tools.

Sun Microsystems, “JavaBeans 1.01 Specification”,

Available at http://java.sun.com/beans.

C. Szyperski, “Component Software-Beyond Object-Oriented Programming”, Addison-
Wesley, 2002.

J. Warmer, A. Kleppe, “The Object Constraint Language”, Reading, MA: Addison Wesley,
1999.

F. Zambonelli, N. Jennings, M. Wooldridge, “Developing Multiagent Systems: The Gaia
Methodology”, ACM Transactions on Software Engineering and Methodology, Vol 12, N°
3, July 2003, pp317-370.

The ANote Modeling Language
for Agent-Oriented Specification

Ricardo Choren! and Carlos Lucena?

! Military Institute of Engineering, Department of Systems Engineering
Praga General Tiburcio 80, Praia Vermelha, Rio de Janeiro / RJ, 22290-270, Brazil
choren@de9.ime.eb.br

2 Pontifical Catholic University of Rio de Janeiro, Computer Science Department

Rua Marqués de Sdo Vicente 225, Gdvea, Rio de Janeiro / RJ, 22451-900, Brazil
lucena@inf.puc-rio.br

Abstract. Multi-agent systems are distributed systems of loosely coupled
agents. Description and construction of these systems are eased by separating
their structure from their dynamic behavior. ANote is a modeling language for
multi-agent system analysis that supports this approach. It provides a notation
language which supports multi-agent system analysis through its decomposition
into structural and behavioral views. Each view is responsible for picturing an
important aspect, while ignoring less important details. This paper describes the
ANote notation language and its views. The notation language is described and
illustrated by an example, an e-insurance system.

1 Introduction

Agent-based computing is rapidly emerging as a powerful technology for the devel-
opment of complex distributed software systems, synthesizing contributions from
many different research areas including artificial intelligence and software engineer-
ing [39]. To foster the creation of agent-based applications, new software engineering
techniques are currently in progress. In this approach to software development, appli-
cation programs are built of software agents. An agent is a module that embodies
some goal, some actions — which operate to achieve these goals — and some high-
level message interface, i.e. it is a software component that executes autonomously
and communicate with their peers by exchanging messages in an expressive commu-
nication language [17].

Many platforms, frameworks, programming languages, modeling languages,
methodologies, and so on, were developed to face the challenges and promises of the
agent technology in recent years. However, compared to previous efforts in software
engineering, such as in the object-oriented paradigm, the work in agent-oriented
software engineering is still in its beginning [35]. In particular, we believe that a
modeling language is an indispensable element to assist the agent-based software
technology.

Although we believe that the object-oriented paradigm (e.g. UML-based ap-
proaches) is the most popular paradigm for software development, it has some flaws
when it comes to agent-based application development [15, 16]. Software engineers
who design and implement multi-agent systems are faced with concerns such as
autonomy, interaction and adaptation that are not naturally supported by abstractions

R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 198-212, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The ANote Modeling Language for Agent-Oriented Specification 199

associated with object-oriented software engineering [15]. It turns out that the devel-
oper has to make several manipulations in the design to accommodate the agency
properties to the object-oriented paradigm. This leads to a poor production of multi-
agent systems, which are hard to maintain, evolve and reuse.

So, directly using an object-oriented modeling language, or an extension, is a
limiting factor in an agent-based software environment. UML, for instance, is visual
modeling language to develop and exchange meaningful models for Object Analysis
and Design, as stated in the UML Specification Document [28]. A UML profile is not
sufficient, because it would mean that an agent could be seen as a stereotyped or
constrained object. A stereotype or a constraint does not change the nature of the item
it affects, i.e. a stereotyped object is still an object.

UML would have to be changed to include notation for goals, agents, plans, or-
ganizations and agency properties, for example. To properly support agent-based
modeling, it would be necessary to add new concepts and notations in the UML core
meta-model. This addition would increase the language complexity thus making it
more difficult to model an agent system.

Indeed, the definition of a conceptual meta-model is a key issue to encourage the
use of a new paradigm. A conceptual meta-model is very important for problem un-
derstanding (conceptual modeling) and solution proposal (computational modeling)
of any complex system development [12] since it appropriately describes the problem
domain and its abstractions.

This paper proposes an approach that aims to specify a multi-agent system. This
approach is based on the definition of an agent-based conceptual meta-model, and it
uses integrated views to better specify the system’s features. These views rely on the
concepts defined in the meta-model and they classify the structural and dynamic as-
pects of a multi-agent system. Each view is modeled and documented using ANote.
ANote is a notation language for visualizing, specifying, constructing, and document-
ing the artifacts of a multi-agent system specification. ANote provides a set of dia-
grams, each one modeling a different view of a multi-agent system. The approach is
illustrated by an example, an e-insurance system, which has been analyzed using the
ANote modeling language.

The remainder of the paper is structured as follows. Section 2 describes the ANote
conceptual meta-model. Section 3 describes the ANote views. Section 4 explains the
modeling language by showing a sample case study. A discussion of related work is
presented in Section 5, while Section 6 summarizes the paper and offers directions for
future work.

2 The ANote Conceptual Meta-model

The ANote modeling language was developed to offer a standard way to describe
concepts related to the multi-agent system modeling process. In the present section
we present the ANote meta-model for constructing a multi-agent system design. This
meta-model provides a schema of the concepts, their relations, and some constraints
that build a multi-agent solution.

The main concepts defined in the ANote meta-model (Fig. 1) are:

200

Ricardo Choren and Carlos Lucena

Is Implemented By .
Goal Scenario
Coml
Aims To Achieve|
T T Plays. Aims To Achieve
Interacts With
Message Agent T Organization roie] Service
Uses As Input / "
Output Perceives [Uses Performs Provides Service To
Resource Action
Uses As Input / Implements
Output
Is A
Is Related To Is A [Describes
|j‘ Entity Direct Adaptive

Fig. 1. The ANote conceptual meta-model

Goal. A Goal is a system objective, a functionality that must be achieved by one or
more Agents. It associates an Agent with its Actions. Goals found in requirements
can be of different categories. At the meta-level, such categories are organized into a
specialization hierarchy, which means that goals can be refined into several alterna-
tive combinations of sub-goals.

Agent. An Agent is the main abstraction of the agent paradigm. An Agent can act and
interact in the system in order to achieve a Goal. It has a limited perception of the
system environment (i.e. Resources).

Scenario. A Scenario illustrates an Agent behavior (sequence of Actions) while it
intends to accomplish a Goal in a particular context (system state), i.e. it shows a
Goal realization. There can be usual contexts, which are contexts that show some
usual execution of an Agent, and variant contexts, which are context that require
some Agent adaptation (execution of other — possibly new — Actions).

Action. An Action is a computation that results in a change in the state of an Agent.
Actions are the building blocks of Agents’ action plans. There can be two types of
Actions: DirectAction and AdaptiveAction. A DirectAction is an Action that an
Agent usually performs while participating in a Scenario (context) to achieve a Goal.
Nevertheless, if the context requires the Agent to adapt itself (this adaptation requires
some reasoning functionality), the Agent may perform AdaptiveActions.

Message. A Message is conveyance of information from one Agent to another. It has
a protocol (defined structure) and is mostly asynchronous.

Resource. Resource is used to represent non-autonomous Entities such as databases
or external programs used by Agents. Resources describe the multi-agent system data
(or ontology) level and they are useful to model the system environment; i.e., the set
of data contents that Agents will manipulate while performing Actions.

Organization. An Organization is a group of (one or more) Agents working together
in order to perform some useful function, i.e. deliver a Service. As there may be sev-

The ANote Modeling Language for Agent-Oriented Specification 201

eral Organizations in a multi-agent system, Organizations are connected by pro-
vider/customer relationships. These relationships define how Agents in an Organiza-
tion may depend on (interact with) Agents in another Organization.

3 ANote Views

A multi-agent system can be described, modeled and managed in terms of its struc-
ture and its dynamics. The system structure includes the agents, the environment,
along with its resources, and also the organizational components (although the latter
relates to a higher level of structure). The system dynamics are related to the descrip-
tions of agents’ behaviors. These two angles provide a model for agent-based system
specification, which can be further detailed into views or perspectives. A view is a
partial specification that provides a certain abstraction of a system aspect under con-
sideration. It enables the software designer to concentrate on a single set of properties
each time, as he only needs to write one view at a time. In addition, it enables him to
consider only those features that are important for a particular context.

Each ANote view has a specific representation that supplies some properties, i.e. it
is based on one of the ANote’s meta-model concept. The combination of these prop-
erties provides an extended knowledge about a system specification [14].

3.1 Structural Views

The Goal View specifies the system goals. A goal defines a service or functionality
that some user expects to get from the system. Goals lead to the incorporation of
components that should support them and they may be used to assign the respective
responsibilities of agents in the system, i.e. to provide the basis for defining which
agents should best perform which actions.

Goals can be extracted from elaborations, process descriptions and the problem
domain. The approach we use to elicit goals is the functional decomposition, very
related to the approach popularized in [11, 38]. The basis for functional decomposi-
tion is to identify the functions that describe the system as a configuration of func-
tional goals. Complex goals can be functionally decomposed into their constituent
goals and flows, thereby providing a description as a hierarchical tree of goals.

Thus, this view provides an initial identification of a goal tree that outlines the
functions performed by the entities that compose the system. In ANote, a goal is a
node in the goal hierarchy tree and it is represented as a rectangle with rounded cor-
ners. Goals can participate in a specification relationship that is represented as an
arrow that points from the specific node to the generic node (see Fig. 2).

More general
goal

More specific

specialization

Fig. 2. Goal view notation

The Agent View specifies the agent types that exist in a multi-agent application so-
Iution and their relationships, thus defining the system structural base. The main

202 Ricardo Choren and Carlos Lucena

model element in this view is the agent class. An agent class is a description of a set
of agents that share the same goals, functions, relationships, and semantics.

This view identifies the agents by a primary logical subdivision of the system’s
functional goals, defining the entities that will accomplish these goals. It is important
to mention that an agent, in this view, is seen as a discrete modeling element, i.e. it
provides no further details about the agent behavior in the system. The designer
should be able to define the agent structure from the goal hierarchy, with the identifi-
cation of agent classes as the roles that will be responsible to perform related func-
tions in the system generic workflow. Thus, this view provides an elicitation of the
agent types that may be refined later.

In ANote, an agent is represented as a rectangle with a tag A, for Agent. Two
agents that interact in the multi-agent system participate in an association relation-
ship. An association is represented as a line that links the agents that interact (see
fig. 3).

@) Agent 1 ‘ GE} Agent 2

association

Fig. 3. Agent view notation

The Ontology View is the last static view of ANote. It identifies the non-agent
components of the system, and it defines the world (i.e. environment) where the
agents will execute to achieve their goals. This view provides a structural description
of the agent environment resources.

Ontology can be used to specify the environment components with which the vari-
ous agents operate, i.e., the information (or knowledge) manipulated by the agents
and the relationships between them [3]. It includes the definitions of classes, rela-
tions, functions and other objects [18]. Therefore, a resource represents a particular
instance of an object that has identity and attributes values and that can be manipu-
lated by agents through its interface.

The approach to the environment resources specification is related to an object-
oriented approach, such as [22]. It is based on the identification of the agent world
specification as objects, with state and defined interactions with other objects. So,
UML [28], together with its associated Object Constraint Language (OCL) [36], can
be used as an alternative to represent the system environment. Some advantages of
using a UML subset to model ontology can be seen in [4, 7].

Since ANote uses UML to model the system ontology, this view is described as a
UML Class Diagram. An entity is represented as a class with the stereotype entity and
a fact is represented as a class with the stereotype fact. Entities and facts can partici-
pate in the same relationships defined in the UML Class Diagram.

3.2 Dynamic Views

The Scenario View captures agent behavior in specific contexts. The main model
element in this view is the scenario. A scenario is a description denoting similar parts

The ANote Modeling Language for Agent-Oriented Specification 203

of possible agent behaviors limited to a context, i.e., to a purposeful state where ac-
tions and interactions take place among two or several agents. There are proposals [1,
21, 29] that interpret scenarios as containing information on how goals can be
achieved. The goal-scenario combination has already been used to deploy goals [30],
and this combination is specially fit to build a bridge between ANote’s goal and sce-
nario views. Scenarios also offer a concrete way to describe the circumstances in
which a goal may fail, an agent may adapt or learn, and an agent may have an
autonomous behavior. So, this view is also useful to show agency characteristics.

This view proposes to generate one or more scenarios from the previously done
specifications. Each scenario is treated as one specific ordering of actions and events.
Scenarios walk through each possible event sequence in a functional goal, applying
heuristics which suggest possible exceptions that may occur at each step [34].

The scenario view helps the system developer to elaborate pathways through the
goal in two phases. First, it generates each permissible normal course scenario for
normal behavior, and then it identifies alternative paths for each normal sequence for
emergent behavior (adaptive or exceptional context). Each pathway becomes a sce-
nario. In ANote, scenarios are developed as goal schemas, resulting in a textual repre-
sentation of how goals are achieved by agents. The goal schema has the following
parts: main agent, prerequisites, usual action plan, interaction and variant action
plan(s).

The Planning View specifies the execution states, or actions, an agent has to per-
form to compute an action plan. The main model element in this view is a graph,
whose nodes are action states. An action state represents an action execution in a
workflow. It means that the flow is waiting for the action to end in order to make a
transition to the next set of possible action states. This view allows developers to
model the basic workflows that are described in a scenario, and enable agents to de-
liver a service, i.e. accomplish a goal.

An action plan is modeled in a way that allows the agent to map it to its internal
actions, to sequence the events for achieving a goal and to make decisions based on
its current knowledge. The description of an agent’s action plans comes from the
courses of action (normal and alternatives) described in the scenario view. In ANote,
action plans are represented as an action diagram very similar to a state chart [20]. It
has action states and transitions. However, it introduces notation to represent agent
adaptation with adaptive transitions to variant actions. Adaptive transitions, along
with their tags, allow system designers to show when and under what circumstances
an agent should change its behavior by executing a set of actions specified in the
variant action plans of a scenario (see fig. 4).

action state

— = transition
------- > adaptive transition
[1 tag

Fig. 4. Planning view notation

204 Ricardo Choren and Carlos Lucena

The Interaction View is used to represent the set of messages the agents exchange
while computing an action plan. The main model element in this view is the message,
which defines a particular communication between agents. A message is an asyn-
chronous communication, i.e. the sender dispatches the message and immediately
continues with the next step in the execution of its action plan. A message is an in-
formation flow between two agents, a sender and a receiver, and it may have a set of
parameters. The message’s name and parameters set define the message protocol.

This view shows the structural organization of agents that send and receive mes-
sages while executing an action plan. This description helps the designer to represent
the messages and their protocols, in order to specify the communication infrastructure
of the system. In ANote, interactions are represented as a conversation diagram, very
likely to [2], in order to describe the discourse between agents (see fig. 5). Since
messages in a multi-agent system are asynchronous, this diagram is important to: (i)
show the current state of a conversation and, (ii) make a consistency that shows how
the sends of an agent are matched by the receives of another agent.

< > name of speech act {interaction)
[= =] speaker in the stage
loc_act (=contents=) messaqge protocol
) * initiation
* acts follow

| eni of a conversation

Fig. 5. Interaction view notation

3.3 Organizational View

The Organizational View defines the structure of a multi-agent system. This view
specifies the system organizations and their relationships. The main model element in
this view is the organization. An organization is an implementation unit that offers
services (set of goals), accessed by an interface (set of message protocols). This view
allows the system developer to think of a multi-agent system as a set of components
or implementation physical units. The definition of organizations with precise inter-
face specifications allows for their implementation to proceed independently from the
implementation of the rest of the system.

There is no basic approach to split the agents into logical organizations — it is an
arbitrary decision made by the software designer. So, the designer should decide
which agents will be part of an organization and which properties (interface) will be
visible or hidden.

In ANote, organizations are represented as boxes (see fig. 6). An organization box
can show the set of agents that belong to it. Organizations can participate in a de-
pendency relationship. A dependency shows that organizations are arranged in a
client-server model. It expresses that an agent of an organization requires the service
of an agent in another organization. A dependency is represented as a dashed arrow
from the client to the server organization.

The ANote Modeling Language for Agent-Oriented Specification 205

Crganization A

Organization B

dependency

Fig. 6. Organization view notation

3.4 Consistency Between Views

In ANote, specification information is represented in a wide variety of representa-
tions, in different notations, and the information is possibly captured with different
purposes. A variety of document views can be generated using ANote diagrams and,
as the amount and diversity of information about the system grows, the need for sup-
porting consistency and traceability among different levels of abstraction increases
[19].

Thus, it is important to relate different diagrams, i.e. to give support for relating in-
formation across such representations. This includes support to retrieve information
from within these diagrams, to navigate between them, and to handle changes made
across them in a consistent manner. In fact, it is important to maintain the traceability
of a concept that can appear in different views.

ANote has a set of rules [26], specified in OCL, to define the required consistency
of a concept that may appear in diagrams from different views, and to serve as a logic
basis to support consistency management. For instance, a goal must be accomplished
by at least an agent. An agent accomplishes a goal by performing an action plan and,
possibly, by interacting with other agents in a context. Thus, if a functional goal is
defined, the designer will have to describe at least on scenario for it, with the con-
stituents plans and interactions.

Another rule defines that if an agent appears in the interaction part of a scenario
description, there must be an association, at the agent view diagram, between this
particular agent and the lead agent. This set of rules is important to build management
tools with embedded traceability and to ensure the robustness of the design. Since a
multi-agent solution may be a large-scale system, management tools are important to
support traceability between different representations, and to help visualize cross-
representational concepts. The complete set of ANote’s consistency rules is in [26].

4 A Case Study

In order to experiment with our modeling approach, we have experimented with sev-
eral variations of agent-based specifications that are available in the literature. These
include a marketplace [24] and a multi-agent system, the LearnAgents [31], for the
Trading Agent Competition (TAC) [33].

The case study shown here is an insurance brokering system [25]. The example is
a distributed, agent-based system that makes possible the electronic commerce of

206 Ricardo Choren and Carlos Lucena

insurance products. The system includes an agent representing each of the insurers,
an agent representing the customer and a broker agent for brokering services. The
customer (system user) provides the attributes of the needed insurance product to a
customer agent. The customer agent sends this information to the broker agent. Then,
the broker agent sends an announcement to all the insurer agents with the insurance
product attributes.

When a broker agent sends an announcement, it starts a negotiation round with the
insurer agents. At each negotiation round, insurer agents send proposals to the broker
agent, which evaluates them. A negotiation round ends when a deadline is reached or
a satisfactory proposal is received.

During the negotiation round, the broker agent may have received a set of satisfac-
tory insurer proposals. So, the broker agent starts a new interaction with the customer
agent to send those proposals. The customer agent displays each proposal to the user
that can accept or reject it. If the user accepts a proposal, the customer agent starts an
interaction with the insurer agent that made the proposal in order to buy it. The cus-
tomer agent also updates a user profile that it keeps. If the broker agent did not re-
ceive any proposal, it sends a message to the customer agent indicating that no pro-
posals are available. The customer agent can display this information to the user and
finish (unsuccessfully) the execution, or it can relax some attributes of the needed
product based on the profile of previous user interactions with the system and restart
the negotiation process.

Observing a functional decomposition approach, the most generic goal of the sys-
tem is to provide an insurance marketplace. In a first level of decomposition, the
context goal can be subdivided into three goals: getting product info, negotiating
product and delivering product.

The refinement of goals continues until the system developer states the functional
goals. In this example, we consider the following functional goals: Retrieve product
attributes; Update user profile; Inform product attributes; Announce product; Gener-
ate proposal; Evaluate proposal; Inform satisfactory proposals; Ask customer user
satisfaction; Relax product attributes; Close deal. The hierarchy of goals produces the
diagram of the goal view, as seen in fig. 7 (Negotiating product branch only, for brev-
ity reasons).

Provide insurance
marketplace

Negotiate
product |

'—-______“_

Inform product Announce Generate Evaluate
attrimntes product proposal proposal

Fig. 7. Goal view diagram (partial)

The system agents are the customer agent, broker agent and insurer agent. Note
that both customer and insurer agents interact with the broker agent. Thus, there must
be an association relationship between customer and broker agents and between in-
surer and broker agents. The diagram for the agent view is seen in fig. 8. The system

The ANote Modeling Language for Agent-Oriented Specification

@ Customer @ Broker @ Insurer

Fig. 8. Agent view diagram

zertitys " zentitys zehtitys
@ UserProfile @& Product & Announcement
0.4
«grtitys wartitys gantitys
(3 Attibute @ Proposal [~ | (& NegociationsRound

Fig. 9. Ontology view diagram

207

resources are related to insurance products, announcements, proposals, negotiation

rounds and user profiles. The diagram for the ontology view is shown in fig. 9.

Now, the system designer must specify the scenarios. To specify a scenario, the
system designer must relate a functional goal to an agent and must also describe the
courses of action the agent may take to achieve the goal. For each functional goal of
an agent there must be one, or more, scenario descriptions. The description of a
course of action indicates when the agent needs to interact with another agent. So, the
system designer must specify the interaction message (name and arguments). Actu-
ally, the diagrams for the scenario, planning and interaction views are closely related.
Figures 10 to 12 show the diagram for a scenario and its corresponding planning and

interaction diagrams.

SEND PROPOSAL

MATN AGENT

INSURER

PRECONDITION

Anncuncement received

USUAL ACTION PLAN

1. create list of Product Attributes
2. match with list of current available selling Products
2.1 for each matching selling Product
2.1.1include selling Product in proposal list
3 for each Product in proposal list
3.1 generate Proposal
3.2 send Proposal

INTERACTION

BROKER

VARIANT ACTION PLAN

variant condition: no matching selling Product

1. pick selling Product closest related to announced Product by
checking the Product Attribute set

2. generate Proposal with picked Product

3. send Proposal

Fig. 10. A scenario view diagram

Finally, the system developer may split the system into organizations. In this ex-
ample, we decided to create just one organization. This is because the system is not
too complex to require a division into more fine-grained organizations.

208 Ricardo Choren and Carlos Lucena

Create list

Do match
Include proposal
in list

Generate Generate
proposal proposal
E—

[no matching]

Pick
closest

Send
proposal

Send
proposal

o

Fig. 11. A planning view diagram

< send proposal >

[< broker =] [< insurer >]

ann_Msg { <Announcement=)

ack_ann_Msg i}

prop_Msa { <Proposal>)

prop_clos_Msg { <Proposal>)

ack_prop_Msg i}

Fig. 12. An interaction view diagram

The diagrams presented above (again, the complete set of diagrams was not shown
for brevity reasons) show part of the consistency rules there are between the ANote
diagrams. For instance, the Send Proposal scenario shows the Broker agent class as
participating in an interaction with the Insurer agent class. This information can also
be seen in the association between the Broker and Insurer agent classes in the agent
view diagram and in the interaction view diagram shown in Fig. 12.

5 Related Work

There is an extensive body of work being done in the field of agent-based systems
modeling, most of it related to development methodologies. The Gaia [37] methodol-

The ANote Modeling Language for Agent-Oriented Specification 209

ogy contains two analysis models and three design models. While the analysis models
are based on well-defined concepts, agents are basically reactive since it does not
model adaptation scenarios and plans. Thus, an agent always performs only its re-
sponsibilities with a rigid description of activities. Furthermore, Gaia specifies many
different things in the Role Schema, which results in a scattered design of the system.
For instance, it does not represent agency concepts and it mingles the specification of
non-agent components with the specification of roles.

The Tropos [6] methodology focuses on the early requirements phase of software
development. ANote provides a more detailed design process. In fact, it would cer-
tainly be possible to adapt Tropos early requirements phase for use in ANote, mostly
in the goal elicitation and agent discovery phases. ANote goes further, by specifying
the agent environment, the agents’ action plans, interactions and organizations.

The MaSE methodology [9] is a conversation-centric methodology. In MaSE,
agents coordinate their actions via conversations to accomplish individual and com-
munity goals. It is one of the few methodologies that appear to have significant tool
support. However, MaSE is unsuitable for our purposes since it views agents "
merely as a convenient abstraction, which may or may not possess intelligence" [10,
p232]. Thus, MaSE (intentionally) does not support the construction of plan-based
agents that are able to provide a flexible mix of reactive and proactive behavior.

Some approaches are based on UML and extend or modify it, as in AUML [2],
MESSAGE [5]. While UML, as an object-oriented modeling paradigm, is quite pow-
erful, there are major conceptual differences between objects and agents, including
differences in the degree of autonomy, flexibility and control [23]. AgentUML
(AUML) [2], for example, defines extensions to UML Sequence Diagram with nota-
tions for agent concepts. However, just adding some new interaction modes does not
turn an object into an agent. Besides, representing an agent as an object (i.e., as a set
of attributes and methods) is not very useful because the object representation is too
fine-grained and it is not at the same level of abstraction as the agent representation.
For instance, a message in the object-oriented paradigm is a method invocation (i.e.,
the object always executes upon receiving). Nonetheless, in the agent-oriented para-
digm, a message is asynchronous and should be dealt (agent planning) prior to execu-
tion (agent action).

MESSAGE [5] defines six agent models, and it is, probably, the most comprehen-
sive method. Yet, it adopts UML and AUML, i.e. object-orientation, to detail the
system design. In fact, using the object-oriented paradigm to model agent-based sys-
tems is not desirable since an agent and an object do not share the same characteris-
tics. An object does not provide support to reactive and proactive behaviors. Further-
more, the object-oriented paradigm does not directly support an organizational
structure, with asynchronous interactions and autonomous behavior.

It is true that ANote uses an UML diagram in the Ontology View. Nevertheless, in
ANote, the UML Class Diagram is used to model the non-agent entities that inhabit
the multi-agent system environment and that are used by agents. Note that this does
not imply in a conceptual schizophrenia since object-orientation is never used to
model agent concepts.

ANote offers a modeling language centered on the agent abstraction, based on the
definition of a conceptual meta-model. This is very important to make developers
think in terms of another paradigm. Also, ANote uses a goal-oriented approach to

210 Ricardo Choren and Carlos Lucena

specify an agent-based solution. The modeling language offers a logical division of a
multi-agent system specification process in views, each one with its model. These
models capture the agent system specifics, including the system functionalities (goal
view), the agents that build the multi-agent solution (agent view), the environment
modeling (ontology view), the way the resources in the environment will be used by
agents (scenario and planning view), the agent planning (planning view), the multi-
agent modules (organization view), and also agency properties, such as interaction
(interaction view), autonomy (scenario and planning views), and the dynamic adapta-
tion of the agents (scenario and planning views). In addition, ANote uses goal analy-
sis techniques that have been shown to be very useful [8].

6 Conclusion

This paper presented ANote, a modeling language that offers a set of diagrams to
model a multi-agent system in different views. A view includes the most important,
or distinguishing aspects of something while suppressing or ignoring less important,
immaterial, or diversionary details.

ANote’s views are able to specify the system’s structural (goal, agent and ontol-
ogy) aspects, dynamic (scenario, planning and interaction) aspects and physical (or-
ganization) aspects. Besides, the views are interconnected in the sense that concepts
from a view may appear on some other view diagram. This adds traceability to the
concepts modeled in the diagrams.

ANote views facilitate a multi-agent system development in three different ways.
First, they describe a multi-agent system using agent-based definitions, such as
agents, plans, interactions, etc. Second, they illustrate abstractions by providing per-
spectives that encapsulate partial specifications, described in different notation sets.
Finally, they increase modularity by decomposing a system into small, simple group-
ings, and also remove distinctions to emphasize commonalities.

The modeling language is used to specify multi-agent systems. The ANote was not
developed with a particular architecture in mind since it intends to be general. How-
ever, it should guide the implementation into an agent architecture or framework. The
works in [24, 31] show multi-agent systems that were modeled with ANote and im-
plemented in two different architectures: one based on the CORBA Component
Model [27] and another based on an Agent Framework [32].

The research on the ANote reported here is still in progress. Much remains to be
done to further refine the proposed notation and validate its usefulness with other
case studies. Experience in using the notation language to specify multi-agent sys-
tems is already contributing in this direction. Moreover, we believe that tool support
will be a key aspect to help system developers to deploy multi-agent application solu-
tions using ANote. There is already an ongoing work to provide a tool based on
ANote, using the Eclipse [13] open platform. Since ANote has a conceptual meta-
model, i.e. a common data model for all conceptual artifacts, and a set of consistency
rules, this tool will also be able to help designers to develop consistent diagrams
throughout the different views.

The ANote Modeling Language for Agent-Oriented Specification 211

Acknowledgements

This work has been partially supported by the Software Engineering for Multi-Agent
Systems (ESSMA) Project under grant 552068/2002-0 (CNPq, Brazil).

References

1.

10.

11.

12.

13.
14.

15.

16.

Antén, AL, McCracken, W.M., Potts, C.: Goal Decomposition and Scenario Analysis in
Business Process Reengineering. Proceedings of the Advanced Information Systems Engi-
neering, CAiSE'94 (1994) 94-104.

. Bauer, B., Muller, J., Odell, J.: Agent UML: A Formalism for Specifying Multiagent Soft-

ware Systems. International Journal of Software Engineering and Knowledge Engineering
11(3) (2001) 207-230.

. Bayardo, R.: InfoSleuth: Agent-Based Semantic Integration of Information in Open and

Dynamic Environments. Proceedings of the ACM International Conference on the Man-
agement of Data, SIGMOD'97 (1997) 195-206.

. Bergenti, F., Poggi, A.: Exploiting UML in the Design of Multi-Agent Systems. Proceed-

ings of the Ist International Workshop Engineering Societies in the Agent World (2000)
106-113.

. Caire, G., Coulier, W., Garijo, F., Gomez, J., Pavon, J., Leal, F., Chainho, P., Kearney, P.,

Stark, J., Evans, R., Massonet, P.: Agent Oriented Analysis Using Message/UML. In:
Wooldridge, M.J., Weiss, G., Ciancarini, P. (eds.): Agent-Oriented Software Engineering
II. Lecture Notes in Computer Science, Vol. 2222. Springer-Verlag, Berlin Heidelberg
New York (2002) 119-135.

. Castro, J., Kolp, M., Mylopoulos, J.: Towards Requirements-Driven Information Systems

Engineering: the Tropos Project. Information Systems 27(6) (2002) 365-389.

. Cranefield, S., Purvis, M.: UML as an Ontology Modeling Language. Proceedings of the

IJCAI'99 Workshop on Intelligent Information Integration (1999) 46-53.

. Dardenne, A., Lamsweerde, A., Fickas, S.: Goal-Directed Requirements Acquisition. Sci-

ence of Computer Programming 20 (1993) 3-50.

. DeLoach, S.A.: Multiagent Systems Engineering: a Methodology and Language for De-

signing Agent Systems. Proceedings of the 1st International Bi-Conference Workshop on
Agent Oriented Information Systems, AOIS'99 (1999) 45-57.

DeLoach, S.A., Wood, M.F., Sparkman, C.H.: Multiagent Systems Engineering. Interna-
tional Journal of Software Engineering and Knowledge Engineering 11(3) (2001) 231-258.
De Marco, T.: Structured Analysis and Structured Specifications. Prentice Hall, New Jer-
sey (1979).

Dieste, O., Juristo, N., Moreno, A., Pazos, J.: Conceptual Modeling in Software Engineer-
ing and Knowledge Engineering: Concepts, Techniques and Trends. In: Chang, S.K. (ed.):
Handbook of Software Engineering and Knowledge Engineering Fundamentals. World Sci-
entific Publishing Co., v. 1 (2001).

Eclipse.org: Eclipse, v 3.0 (2004).

Finkelstein, A.: Viewpoint Oriented Software Development: Methods and Viewpoints in
Requirements Engineering. In: Bergstra, J.A., Feijs, L.M.G. (eds.): Algebraic Methods II:
Theory, Tools, and Applications. Lecture Notes in Computer Science, Vol. 490. Springer-
Verlag, Berlin Heidelberg New York (1991) 29-54.

Garcia, A.F., Lucena, C., Cowan, D.D.: Agents in Object-Oriented Software Engineering.
Software: Practice and Experience 34(5) (2004) 489-521.

Garcia, A.F., Silva, V.T., Lucena, C.J.P., Milidiu, R.L.: An Aspect-Based Approach for
Developing Multi-Agent Object-Oriented Systems. Proceedings of the 15th Brazilian Sym-
posium on Software Engineering, SBES 2001 (2001) 177-192.

212

17.

18.

19.

20.

21.

22.

23.

24,

25.
26.
217.
28.
29.
30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

Ricardo Choren and Carlos Lucena

Genesereth, M., Ketchpel, S.: Software Agents. Communication of the ACM 37(7) (1994)
48-53.

Gruber, T.: A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition 5(2) (1993) 199-220.

Grundy, J.C., Hosking, J.G., Mugridge, W.B.: Supporting Inconsistency Management for
Multiple-View Software Development Environments. IEEE Transactions on Software En-
gineering 24(11) (1998) 960-981.

Harel, D.: StateCharts: A Visual Formalism for Complex Systems. Science of Computer
Programming 8 (1987) 231-274.

Holbrook, C.: A Scenario-Based Methodology for Conducting Requirements Elicitation.
ACM SIGSOFT, Software Engineering Notes 15(1) (1990) 95-104.

Jacobson, 1., Booch, G., Rumbaugh, J.: The Unified Software Development Process. Addi-
son-Wesley, Massachusetts (1999).

Kishore, R., Zhang, H., Ramesh, R.: A Helix-Spindle Model for Ontological Engineering.
Communications of the ACM 47(2) (2004) 69-75.

Melo, F., Choren, R., Cerqueira, R., Lucena, C., Blois, M.: Deploying Agents with the
CORBA Component Model. In: Emmerich, W., Wolf, A.L. (eds.): Component Deploy-
ment. Lecture Notes in Computer Science, Vol. 3083. Springer-Verlag, Berlin Heidelberg
New York (2004) 234-247.

Nogueira, L., Oliveira, E.: A Multi-agent System for e-Insurance Brokering. Proceedings
of the Workshop on Agent Technologies for e-Services, ATES 2002 (2002) 263-282.
Noya, R.C.: A Modeling Language for Multi-Agent Systems. PhD Thesis, PUC-Rio, Brazil
(2002).

Object Management Group: CORBA Component Model, v 3.0 (2002).

Object Management Group: Unified Modeling Language, v 1.5 (2003).

Potts, C.: Fitness for Use: The System Quality That Matters Most. Proceedings of the In-
ternational Workshop on Requirements Engineering (1997) 15-28.

Rolland, C., Souveyet, C., Achour, B.: Guiding Goal Modeling Using Scenarios. IEEE
Transactions on Software Engineering 24(12) (1998) 1055-1071.

Sardinha, J.A.R.P., Choren, R., Lucena, C.J.P., Milidii, R.L.: Engineering Machine Learn-
ing Techniques into Multi-Agent Systems. Submitted to the International Journal on Soft-
ware Engineering and Knowledge Engineering (2004).

Sardinha, J.A.R.P., Ribeiro, P.C., Lucena, C.J.P., Milidii, R.L.: An Object-Oriented
Framework for Building Software Agents. Journal of Object Technology 2(1) (2003) 85-
97.

SICS AB: Trading Agent Competition’04 (2004). See: http://www.sics.se/tac/news.php
Sutcliffe, A.: Supporting Scenario-Based Requirements Engineering. IEEE Transactions on
Software Engineering 24(12) (1998) 1072-1088.

Tran, Q.N.N., Low, G., Williams, M.A.: A Preliminary Comparative Feature Analysis of
Multi-agent Systems Development Methodologies. Proceedings of the 6th International
Bi-Conference Workshop on Agent Oriented Information Systems, AOIS'04@CAiSE'04
(2004) 386-398.

Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modeling With UML.
Addison-Wesley, Massachusetts, (1998).

Wooldridge, M., Jennings, N., Kinny, D. :The Gaia Methodology for Agent-Oriented
Analysis and Design. Autonomous Agents and Multi-Agent Systems 3(3) (2000) 285-312.
Yourdon, E., Constantine, L.: Structured Design. Yourdon Press, New Jersey (1978).
Zambonelli, F.: Agent-Oriented Software Engineering for Internet Applications. In:
Omicini, A., Zambonelli, F., Klusch, M., Tolksdorf, R. (eds.): Coordination of Internet
Agents Models, Technologies, and Applications. Springer-Verlag, Berlin (2001) 326-346.

A Software Framework for Automated Negotiation*

Claudio Bartolini!, Chris Preist?, and Nicholas R. Jennings?

! HP Laboratories. Page Mill Rd., Palo Alto, CA 94304, USA
claudio.bartolini@hp.com
2 HP Laboratories. Filton Road Store Gifford Bristol BS34 8QZ, UK
chris.priest@hp.com
3 University of Southampton. Southampton SO17 1BJ, UK
nrj@ecs.soton.ac.uk

Abstract. If agents are to negotiate automatically with one another they must
share a negotiation mechanism, specifying what possible actions each party can
take at any given time, when negotiation terminates, and what is the structure of
the resulting agreements. Current standardization activities such as FIPA [2]
and WS-Agreement [3] represent this as a negotiation protocol specifying the
flow of messages. However, they omit other aspects of the rules of negotiation
(such as obliging a participant to improve on a previous offer), requiring these
to be represented implicitly in an agent’s design, potentially resulting incom-
patibility, maintenance and re-usability problems. In this chapter, we propose an
alternative approach, allowing all of a mechanism to be formal and explicit. We
present (i) a taxonomy of declarative rules which can be used to capture a wide
variety of negotiation mechanisms in a principled and well-structured way; (ii)
a simple interaction protocol, which is able to support any mechanism which
can be captured using the declarative rules; (iii) a software framework for nego-
tiation that allows agents to effectively participate in negotiations defined using
our rule taxonomy and protocol and (iv) a language for expressing aspects of
the negotiation based on OWL-Lite [4]. We provide examples of some of the
mechanisms that the framework can support.

1 Introduction

Recently there has been much interest in the role of dynamic negotiation in electronic
business transactions. For negotiation to take place between two or more parties, they
need to agree on what economists refer to as a market mechanism or negotiation
mechanism. This defines the rules of the “game” which the parties are engaged in and
so determines the space of the possible actions that they can take. Within this game,
each party adopts a strategy which determines exactly which actions they make (in
response to actions by other parties or external events) in an effort to maximise their
(individual or collective) gain. The mechanism must be public and shared by all par-
ties, while an individual’s strategy stays private, and is only revealed implicitly
through the actions they take. For example, consider a simple market mechanism for
an English auction. It is defined by the following rules: (i) the buyers can post bids at
any time; (ii) a bid is only valid if it is higher than the currently highest bid; (iii) ter-

%

This chapter is an updated and extended version of [1] C. Bartolini, C. Preist, N.R. Jennings
Architecting for Reuse: A Software Framework for Automated Negotiation, in F. Giunchiglia,
J. Odell, G. Weil} (Eds.) Agent-Oriented Software Engineering III, Springer-Verlag LNCS
2585/2003.

R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 213-235, 2005.
© Springer-Verlag Berlin Heidelberg 2005

214 Claudio Bartolini, Chris Preist, and Nicholas R. Jennings

mination occurs when no buyer has posted a bid in the last five minutes; (iv) after
termination, the good is sold to the buyer with the current highest bid at the price bid.

The participants in the auction are constrained by these rules, but have a free
choice of what action to take within them. A simple strategy for a buyer in such an
auction is to set a maximum limit to the price they are willing to pay for the good, and
to bid whenever the current highest bid is held by another buyer and is lower than
their price limit.

In this chapter we consider mechanisms not strategies. In particular, we are con-
cerned with the definition of interaction protocols underpinning a mechanism, rather
than the emerging properties of the mechanism itself (for an example of the latter,
compare [5]). The protocol determines the flow of messages between participants,
specifying when an agent can send a message, and what messages it can send as valid
responses to specified incoming messages. For example, a negotiation protocol for the
English auction states that (among other things) that potential buyers send messages
specifying their bids to the auctioneer, and receive an accept or reject message in
response. When the auction terminates, all participants receive a message informing
them of who the winner is, and the winning bid.

Various protocols are used for automated negotiation. They can be one-to-one
(such as iterated bargaining [6]), one-to-many or many-to-many (such as auctions
[7]). However, most state-of-the-art multi-agent systems are designed with a single
negotiation protocol explicitly hard-coded in all agents (usually as finite state ma-
chines). This leads to an inflexible environment, only able to accept agents designed
for it. An advance on this is provided by standardization activities such as FIPA [2]
and WS-Agreement [3]. FIPA provides formal definitions of several standard negotia-
tion protocols. The FIPA protocol for an English auction, described informally above,
is shown in [8].

However, these negotiation protocols only formalise the interactions between the
agents involved. They specify the permissible flow of messages, but omit information
regarding other aspects of the rules of negotiation in a market mechanism.

For example, the FIPA English Auction protocol does not specify the criteria for a
bid being acceptable (i.e. that it must be greater than the current highest bid) or the
conditions under which the auction will terminate (i.e. that no bids have arrived in the
last few minutes). Hence, because the multi-agent environment does not make these
explicit, the designer of an agent using the protocol must be aware of these negotia-
tion rules and design their agent taking them into account. As a result of this, with the
exception of the interaction aspects, the negotiation mechanism is implicit in the de-
sign of the multi agent system [9].

All the considerations made above also apply WS-Agreement [3], a standard pro-
posed by The Global Grid Forum (GGF). WS-Agreement includes the definition of a
simple interaction protocol to support one-to-one negotiation, with the likely aim to
support different mechanisms in the future through definition of multiple interaction
protocols.

We propose an alternative to that currently adopted by FIPA and GGF. Our ap-
proach allows negotiation rules to be explicitly specified and categorised both at the
design and at the implementation stage of agent oriented software development. We
carry out an analysis of a generic negotiation process, which is able to capture com-
mon aspects of a wide variety of types of negotiation.

A Software Framework for Automated Negotiation 215

From there we derive: (i) a taxonomy of declarative rules which can be used to
capture a wide variety of negotiation mechanisms in a principled and well-structured
way and (ii) a simple interaction protocol, which is able to support any mechanism
which can be captured using the declarative rules. This approach has the following
advantages:

1. The generic negotiation process and rule taxonomy provide valuable conceptual
tools for software engineers designing multi-agent systems which involve negotia-
tion mechanisms. Their application will result in the mechanisms being repre-
sented in a more modular and explicit way than current approaches.

2. A set of rules together with an interaction protocol will fully specify a negotiation
mechanism. Because of this, all information required for the design of agents us-
ing the negotiation mechanism is explicit and well-structured. This makes agent
design and implementation easier, and reduces the risks of unintentional incorrect
behaviour. This also opens the door for future research into creation and analysis
of novel market mechanisms through exploration of new combinations of rules.

3. Because the rules specifying the negotiation mechanism are explicitly represented
in the system, it is possible for an agent to reason over them to determine its be-
haviour and strategy. Ideally, an agent would be able to participate effectively in
an arbitrary negotiation mechanism specified by any set of rules. Negotiation algo-
rithms have been developed that are able to participate in several different negotia-
tion mechanisms, and to adjust their behaviour depending on the details of the
mechanism. For example, [10] present an agent algorithm able to simultaneously
participate in multiple English, Dutch and Sealed Bid auctions, requiring details of
bid increments, closing times and sealed bid winner announcement times to de-
termine its exact behaviour. Using the negotiation framework that we present, an
agent using such an algorithm could identify auctions of different types by check-
ing the mechanism rules against templates, and could identify parameter values in
the rules to determine the mechanism details.

To demonstrate the validity of our approach, in this chapter we also describe a
software framework for automated negotiation that allows agents to effectively par-
ticipate in negotiations defined using our rule taxonomy and protocol. The software
framework can form a highly modular and reusable component in a multi-agent sys-
tem. It advances the state of the art beyond the negotiation protocol approach because
(i) it can be used to implement a wide variety of negotiation mechanisms simply by
instantiating it with appropriate sets of rules. (ii) It is easy to maintain and update. If a
software engineer determines that a particular negotiation must change its mechanism
(see [11]), all they need do is adjust the rules appropriately. (iii) Agents involved in
that negotiation can access the new rules, so at worst can identify that their current
behaviour is inappropriate and issue a warning. A more advanced agent would be able
to automatically modify their behaviour as necessary, provided the changes to the
mechanism were not too great.

The remainder of this chapter is organized as follows: section 2 describes the ge-
neric negotiation framework, built upon the definition of an abstract negotiation pro-
cess and a taxonomy for the rules of negotiation. Section 3 describes a prototype im-
plementation of the negotiation framework. Section 4 presents a number of sample
negotiation mechanisms that can be embodied by the framework. We discuss related
work in section 5 and move to the conclusions in section 6.

216 Claudio Bartolini, Chris Preist, and Nicholas R. Jennings

2 The Generic Negotiation Framework

In this section, we present an abstraction of the negotiation process, developed from
the analysis of many different negotiations, both automated and human. From this, we
develop a general protocol for negotiation.

2.1 An Abstract Negotiation Process

The roles involved in the negotiation process are negotiation participant and negotia-
tion host. In some market mechanisms participants address one another, whereas in
others (e.g. auctions), participants send messages to a negotiation host that forwards
them to other participants that have the right and interest in seeing them. Our abstrac-
tion is that participants always publish their proposals on a common multicast space,
the negotiation locale, which is managed by the negotiation host. The negotiation
locale can be considered as a form of blackboard, with access to write and visibility of
information on it mediated by the negotiation host. Visibility rules are associated to
proposals so that only the participants that have right to see them can see them. This
allows us to see one-to-one and one-to-many negotiation as a particular case of many-
to-many'.

The agent playing the host role may also play a participant role (e.g. in one-to-one
negotiation) or may be non-participatory (e.g. the auctioneer in an auction). In some
cases, the role of negotiation host may alternate between different entities as the nego-
tiation progresses.

The first action to be taken is for a participant to require admission to the negotia-
tion. Much like in [13], admission consists of a simple conversation between the par-
ticipant and the host where the participant requests admission to a particular negotia-
tion and presents its credentials. Based on the credentials that the participant presents,
the negotiation host decides whether to admit the participant to negotiation and in-
forms the participant of the decision. If the participant is admitted, then we move onto
the negotiation itself. The admission step is very important because it is when partici-
pants are informed of the rules of negotiation. To be able to negotiate with one an-
other, parties must initially share a negotiation template. This specifies the different
parameters of the negotiation (e.g. product type, price, supply date etc). Some param-
eters may be constrained (e.g. product type will almost always be constrained in some
way), while others may be completely open (e.g. price). A negotiation locale has a
negotiation template associated with it and this defines the object of negotiation
within the locale.

As part of the admission process to the negotiation, participants must accept the
negotiation template. The constraints expressed in the negotiation template remain
static as the negotiation proceeds.

' This model always requires the participants to trust the negotiation host. Trust issues between
participants and the negotiation host are addressed through the use of convertible undeniable
signatures [12]. The imposition that proposals have to be signed with convertible undeniable
signatures gives the protocol the following desirable properties. Even though proposals are
invisible to the negotiation host, when an agreement is formed (i) participants cannot falsely
claim ownership of the proposals and (ii) participants cannot repudiate the proposals that
they have submitted, unless by refusing to collaborate in a revelation process.

A Software Framework for Automated Negotiation ~ 217

The process of negotiation is the move from a negotiation template to an accept-
able agreement. A single negotiation may involve many parties, resulting in several
agreements between different parties and some parties who do not reach agreement.
For example, a stock exchange can be viewed as a negotiation where many buyers
and sellers meet to trade a given stock. Many agreements are formed between buyers
and sellers, and some buyers.

During negotiation, the participants exchange proposals representing the agree-
ments currently acceptable to them. Each proposal will contain constraints over some
or all of the parameters expressed in the negotiation template. These proposals are
sent to the negotiation host. However, before a proposal is accepted by the locale, it
must be valid. To be valid, it must satisfy two criteria:

— It must be a valid restriction of the parameter space defined by the negotiation
template. The constraints represent the values of parameters that are currently ac-
ceptable. Often, a constraint will consist of a single acceptable value.

— The proposal must be submitted according to the set of rules that govern the way
the negotiation takes place. These rules specify (among other things) who can
make proposals, when they can be made, and what proposals can be submitted in
relation to previous submissions. For example, auctions often have a “bid im-
provement” rule that requires any new proposal to buy to be for a higher price
than previous proposals. Such rules are specified and agreed at the admission
stage.

An agreement is formed according to the agreement formation rules associated
with the negotiation locale. When the proposals in the locale satisfy certain condi-
tions, they are converted by these rules into agreements, and returned to the propos-
ers. The end of a negotiation is determined by termination rules. For example, in an
English auction the termination rule would state that the auction finishes when no
participant has placed a bid for a certain time, and the agreement formation rule
would state that an agreement is formed between the highest bidder and the seller, at
the price the bidder has bid.

This abstract process can be specialised to many different negotiation styles. For
example, in one-to-one bargaining, participants take turns in exchanging proposals in
a previously agreed format. The rules in this case are simple. Any proposal can be
made, as long as it is consistent with the negotiation template and made in turn. The
negotiation terminates when the same proposal is returned unchanged (which we take
as declaration of acceptance) or when one party leaves the negotiation locale. In the
former case, an agreement identical to the last proposal is formed. In an English auc-
tion, the proposals specify the price of the good, every other parameter being fully
instantiated in the negotiation template. Negotiation rules state that every new pro-
posal (bid) will be valid only if it is an improvement over the current best proposal.
Termination occurs at a deadline, and the agreement formed will contain the specifi-
cation of the good as expressed in the negotiation template, at the price specified in
the winning bid.

2.2 Taxonomy of Rules for Negotiation

So far we have been talking about negotiation rules in a very generic fashion. It is
useful at this point to divide the negotiation rules into categories. By examining the

218 Claudio Bartolini, Chris Preist, and Nicholas R. Jennings

flexibility points of the abstract negotiation process described in the previous section,
— for a more complete analysis see [14] — we identified the following categories of
negotiation rules:

Rules for Admission of Participants
Admission Rules: Govern admission to negotiation.

Rules for Proposal Validity
Validity Rule: Enforces that any submitted proposal has to be compliant with the ne-
gotiation template.

Rules for Protocol Enforcement
Posting Rule: Determines when a participant may post a proposal.

Improvement Rule: Specifies, given a set of existing proposals, what new proposals
may be posted.

Withdrawal Rule: Specifies if and when proposals can be withdrawn, and policies
over the expiration time of proposals.

Rules for Updating Status and Informing Participants
Update Rules: Specifies how the parameters of the negotiation change on occurrence
of certain events.

Visibility Rule: Specifies which participants can view a given proposal.

Display Rule: Specifies if and how the information updater notifies the participants
that a proposal has been submitted or an agreement has been made - either by trans-
mitting the proposal unchanged or by transmitting a summary of the situation.

Rules for Agreement Formation
Agreement Formation Rules: Determine, given a set of proposals of which at least
two are compatible, which agreements should be formed.

Rules for Lifecycle of Negotiation
Termination Rule: Specifies when no more proposals may be posted (e.g. a given
time, period of quiescence).

2.3 Definition of the Generic Negotiation Protocol

The three main phases of the generic negotiation protocol are: admission, proposal
submission and agreement formation.

Admission Phase
We begin by describing the admission phase. The protocol requires the participant

requesting admission to send an ACL.PROPOSE? message to the negotiation host.
The payload of the message may contain credentials of the participant. The negotia-
tion host replies either with an ACL.ACCEPT PROPOSAL or an ACL.REJECT
PROPOSAL message, signifying admission (respectively rejection) of the participant
to the negotiation. It has to be noted that this is a straightforward rendition of the

2 We use FIPA ACL messages to describe the protocol. Other ACLs could equally be used.

A Software Framework for Automated Negotiation =~ 219

FIPA propose interaction protocol, represented in figure 1 [8]. (Notice that in the
FIPA protocol, our participant plays the role of the initiator, and the negotiation host
plays the participant.)

FIPA-Propose-Protocol)

Initiator Parficipant
1
1

Opse

refect proposal

acceptproposal

Fig. 1. The FIPA propose interaction protocol

Proposal Submission Phase

After admission, the participants submit proposals by posting them to the negotiation
locale. Participants do so by sending an ACL.PROPOSE message to the negotiation
host, whose payload contains the proposal. Proposal submission continues until ter-
mination is reached, as defined by the termination rules. Termination may occur after
agreement formation (as in one-to-one bargaining), before agreement formation (as in
a sealed bid auction) or may be independent (as in a continuous double auction). Each
time a participant submits a proposal the negotiation host checks that it is syntacti-
cally well formed and it is a more constrained version of the negotiation template.

If the proposal is not valid, it is rejected. The submitter is notified with an
ACL.REJECT PROPOSAL message. If the proposal passes this first stage of valida-
tion, the negotiation host checks that it satisfies the negotiation rules. These rules
define the way in which the negotiation should take place and may include restrictions
on when a proposal can be made (e.g. participants must take turns to submit) and
semantic requirements on valid proposals (e.g. requirements that a proposal must
improve on previous ones). If the proposal passes this second validation stage, the
current set of proposals and associated data structures are updated accordingly and the
submitter and other participants are notified. Who is notified, and the structure of the
notification, is defined by the visibility rules and display rules. The submitter is noti-
fied through an ACL.ACCEPT PROPOSAL message. Once again, the protocol here
described is compliant with the FIPA propose interaction protocol. Following the
rules for updating negotiation status and informing participants, other participants
may be notified through ACL.INFORM messages.

Agents submitting proposals may also withdraw proposals if the rules of negotia-
tion allow them to. This is done through sending an ACL.CANCEL message where
the communicative act that is being canceled is the previous instance of the proposal
(all this is done according to the FIPA cancel meta-protocol [8].

220 Claudio Bartolini, Chris Preist, and Nicholas R. Jennings

Agreement Formation Phase

An agreement formation process can be triggered at any time during negotiation,
according to the agreement formation rules. The negotiation host then looks at the
current set of proposals to determine whether agreements can be made. Agreements
can potentially occur whenever two or more negotiating parties make compatible
proposals. If this is the case, agreement formation rules determine exactly which pro-
posals are matched and the final instantiated agreement that will be used.

Agreement rules may state, for example, that the highest priced offer to buy should
be matched with the lowest priced offer to sell and that the final agreement will take
place at the average price. Often, tie breaking agreement rules will be defined that
will be used if the main agreement rules can be applied in several ways. For example,
earlier posted offers may take priority over later ones.

When the agreement formation rules have been applied to determine exactly which
agreements are made, the negotiation host notifies the participants with ACL.IN-
FORM messages.

Having defined the general protocol for negotiation (for a more complete specifica-
tion and graphical representation, see [14]), we now show how it can be specialized in
a variety of different ways. We do this firstly by presenting a taxonomy of negotiation
rules and then (in the context of our prototype implementation) example rules for
different negotiation mechanisms.

3 Implementation of the Software Framework

In our software framework, the negotiation host functionality is implemented by a
responsible agent with a set of subsidiary agents. Each sub-agent is responsible for the
enforcement of one of the categories of rules described in section 2.2: Gatekeeper
(admission), Proposal Validator, Protocol Enforcer, Information Updater (updating
status and informing participants), Negotiation Terminator (lifecycle of negotiation)
and Agreement Maker. Each sub-agent interacts with other agents, both via direct
messaging and by sharing data using a blackboard system. Any agent can join as a
negotiation participant, provided it conforms to the generic negotiation protocol de-
scribed in section 2.

The main task of the negotiation host agents is to evaluate negotiation rules and
take actions as a consequence. To do so, they use the blackboard which contains in-
formation about the negotiation as a whole (e.g. valid proposals, participants, status of
the negotiation). Each of the agents is initialized with the negotiation rules that it is
responsible for enforcing. They execute rules either in response to a message or in
response to changing data on the blackboard. Full details of the abstract architecture
are given in [14].

We have implemented the negotiation framework using the Jade multi-agent plat-
form [15]. Jade is compliant with the FIPA abstract architecture [2]. The main ab-
stractions in Jade are agents and behaviours (section 3.1) Agents communicate using
messages in the FIPA Agent Communication Language (ACL) [16]. Jade provides
tools for inspecting these messages and also provides a library of interaction protocols
and generic agent behaviours, which we have used as the basis of our implementation.
The natural way of designing the negotiation host agents is as a rule engine. To do
this we use the Java Expert System Shell (Jess).

A Software Framework for Automated Negotiation 221

Following [17], we associate a Jess rule engine with a Jade agent. We implement
our negotiation rules in the Jess rule language. The agent’s behavior monitors changes
on the blackboard and incoming messages, and executes rules in response to these
events.

Agents may write information about the negotiation on the blackboard (section
3.2). Proposals are also stored on the blackboard, provided they satisfy the negotiation
template (section 3.3).

3.1 Agents and Behaviors

The Negotiation Host initializes the blackboard and creates the sub-ordinate agents. It
acts as a first level contact for the negotiation participants. It receives proposals and
forwards them to the Protocol Enforcer. Upon termination of the negotiation, it per-
forms finalization tasks such as putting the agents to sleep. Each of the other agents
has an associated Jess engine. When certain events occur (e.g. a new message or a
change on the blackboard) they evaluate their rules and take the associated actions.
This overall process is represented in Fig 2 (negotiate activity diagram).

Hegotiation Host ared Partici panl

Collabarators
'__,_rffm\-\—_‘

Termirgatiar

Firall zx: ragod o on
Infesinechrs f

:{' = slota

Fig. 2. Negotiate Activity Diagram

222 Claudio Bartolini, Chris Preist, and Nicholas R. Jennings

The Gatekeeper implements an agent-based version of a credentials-based access
control system [18]. On receiving an ACL.REQUEST message from the Negotiation
Host containing information on participant identity and credentials, it evaluates the
admission rules to decide whether the participant should be admitted to negotiation.
The Proposal Validator (Fig. 3) receives proposals (ACL.PROPOSE) from the Nego-
tiation Host. It validates them against the negotiation template. If a proposal is valid,
it forwards it to the Protocol Enforcer. Otherwise, it informs the submitter with an
ACL.REJECT_PROPOSAL message. When the Protocol Enforcer receives a pro-
posal from the Proposal Validator, it checks that the proposal satisfies the posting and
improvement rules. It does this by invoking the Jess engine and accessing associated
proposal data on the blackboard. If this succeeds, it declares the proposal valid and
asserts it on the blackboard. The submitter is informed through an ACL.CONFIRM
message with a proposal id. Otherwise it sends an ACL.REJECT_PROPOSAL mes-
sage to the submitter. The Protocol Enforcer also processes withdrawal requests
(ACL.REQUEST, where the payload is a proposal withdrawal referring to a valid
proposal id), provided they satisfy the conditions of the withdrawal rules. The Nego-
tiation Terminator regularly checks the termination rule to determine whether the
negotiation should end. The termination rule is a Jess rule stating the conditions under
which termination should occur (e.g. a time-out or following agreement formation).
On negotiation termination, it notifies the Negotiation Host. At regular intervals or
when a new proposal is posted on the locale, the Information Updater updates infor-
mation on the blackboard appropriately. It may forward proposals to those partici-
pants eligible to see them (according to the visibility rules) and/or send a digest of the
current state of the negotiation (according to the display rules).

Fartici pant Proposzal Protocol Informaticn

,,_,-'-""'-.:Im Walldator Enfarcer Up=later

meliared |

mgl g iod 5 lb&. :I
fopounl thes nal com iy wih eagDieRcon ies |

|Prepamal comphes wilh s nica i |

Fig. 3. Proposal Submission Activity Diagram

The Agreement Maker (Fig. 4) applies the agreement formation rules to determine
which agreement can be made, given the valid proposals on the blackboard. It then
notifies the interested participants that an agreement has been formed
(ACL.INFORM). Its action can be triggered by an internal clock or by an event such
as the arrival of a new proposal or the termination of the negotiation.

A Software Framework for Automated Negotiation 223

Ageamenl Informalicn
mAre [ITa—

Ho hrook nilcc

e g s
M\
@Ena ? Molity ‘J
b _paricoants

Fig. 4. Agreement Formation Activity Diagram

3.2 Assertions on the Blackboard

We now give details of the knowledge base used by the agents and then give details
of the negotiation proposal language and negotiation rule language which make use of
this. This knowledge base is stored in the negotiation locale and is accessible by the
negotiation host and its sub-agents. All examples are given as Jess assertions and
rules.

Facts About the Negotiation
The negotiation is assigned a unique ID at its start:

(negotiation (id Negotiation-Id))
Other parameters of the negotiation are asserted in the form
(negotiation

(id Negotiation-Id)
(negotiation-parameter Value))

For example, parameters associated with an English auction can be specified in the
following way:

(negotiation

(id auction-37)
seller-proposal Alice-37)
bid-increment 5)
termination-window 30min)
currently-highest-bid 0))

—~ e~~~

This states that auction-37 is selling a good described in proposal Alice-37 (See sec-
tion 3.3), with an auction bid increment of 5. The first four fields will remain fixed,
while the fifth will be updated regularly.

Facts About Participants
When a participant is admitted, the gatekeeper asserts relevant facts in the knowledge
base. The participant is assigned an ID, and associated with a negotiation.

224 Claudio Bartolini, Chris Preist, and Nicholas R. Jennings

(participant
(id Participant-Id)

(negotiation-id Negotiation-Id))
Other parameters of the participants are asserted in the format:
(participant
(id Participant-Id)

(negotiation-id Negotiation-Id)
(participant-attribute-name, Value))

For example, based on a participant’s credentials, the gatekeeper may assign them a
credit limit:
(participant
(id Bob)
(negotiation-id auction37)
(creditLimit 10000))

Facts About Proposal Status

Facts are asserted which specify the current status of proposals on the blackboard. For
example, when a proposal is first received, its submission time is asserted by the
Gatekeeper as:

(submission-time 01/10/01:18:37
(proposal-id Proposal-Id))

When the proposal validator has checked a proposal, it asserts:

(valid-proposal
(proposal-id Proposal-Id))

In a negotiation where new proposals can supersede old ones (such as an English
auction), the Information Updater will assert facts specifying which proposals are
currently active (and retract this if the proposal is superseded).

(active-proposal
(proposal-id Proposal-Id))

3.3 Negotiation Proposals and Templates

The negotiation template and proposals are expressed as OWL-Lite descriptions [4].
We chose OWL-Lite because of its flexibility and expressiveness; the support that it
offers for the creation and maintenance of ontologies and finally because it lends itself
quite naturally to supporting the subsumption operation [19] that as we will see later
is central to the functioning of our framework.

For a more in-depth discussion on why OWL-Lite and its precursor DAML+OIL
[20] satisfy the requirements for a language for negotiation proposals and templates,
see [19]. However, the choice of a description logic based language such as OWL-
Lite is not to be intended as fundamental to the approach but is broadly indicative of
what basic principles could be applied in designing the language.

For simplicity of exposition, here and in the following examples we will adopt a
modified description logics notation [21] to express the proposals and the templates
which is equivalent to the RDF OWL-Lite syntax [4]. XML Schema classes are not
described but it should be clear by their names what they actually mean.

A Software Framework for Automated Negotiation 225

Before presenting the template and negotiation proposals, here are some descrip-
tions of the concepts used. For brevity reasons, we will not exhaustively state all the
description, but it should be quite intuitive to the reader what those concepts mean.
For a more comprehensive description of the terms not defined here — such as Sale,
Product and Participant descriptions for example — see [19].

The Car class is a subclass of Product and must have at most one Model and Make.

Car ¢ Product N
(=31 hasModel .Model) N
(=31 hasMake .Make)

Model = {Punto, TT, S80}
Make = {Ford, Audi, Volvo}

A negotiation host wishing to conduct auctions of cars could define the tem-
plate as:

Templatel = Template M Sale N
Vitem.Car N
YunitPrice.above2000 N
VYquantity.l N
VisComposedOf. (Delivery N Vdate.before20041231)

A negotiation proposal must be a specialization of the negotiation template associ-
ated with the ongoing negotiation. According to the general protocol, negotiation
participant agents can send proposals as ACL.PROPOSE messages containing a nego-
tiation proposal specified as above. The Proposal Validator determines whether the
proposal is valid with respect to (i.e. is subsumed by) the negotiation template by
checking. An example of a proposal that is valid with respect to the template pre-
sented above is:

Proposall = Proposal N

Vseller.Alice N

Vitem. (Car N VhasMake.Fiat N VhasModel.Punto) N

YunitPrice.above3000 N Vgquantity.l N
VisComposedOf. (Delivery N
Vdate.between20041201and200412131))

This states that Alice — who is described as a participant in the participant ontology
(see [19]) — wishes to sell a Fiat Punto for at least £3000 with delivery date after Dec,
1°2004. The template requests that it also be specified that the delivery date be before
the end of 2004.

When a negotiation terminates with an agreement acceptable to both parties, this
agreement must specify the service that is going to be exchanged in an exact and non-
ambiguous manner.

The main benefit of the choice of a description logic based language for expressing
templates, proposals and agreements comes from the fact that the operations to be
carried out over these descriptions by the subsidiary agents during the proposal vali-
dation and agreement formation phase can be reduced to the basic operations of
checking for satisfiability and subsumption between descriptions that description logic
reasoners can carry out effectively and efficiently [22].

226 Claudio Bartolini, Chris Preist, and Nicholas R. Jennings

Validation: The proposal validator, on receiving a proposal P, must initially check
that it is valid. It is valid if it is a more constrained version of the negotiation template
T for this negotiation. In description logic, this means that the negotiation host must
check that T subsumes P. Formally, this can be specified as:

valid,(P) & P C T

Agreement Formation: The agreement former come into action to identify all pairs
of proposals which are compatible. Protocol specific rules are then used to determine
exactly which of these pairs are used to form an agreement, and how exactly to gener-
ate the final agreement. A set of descriptions are compatible if their intersection is
satisfiable:

compatible (D1,..,Dn) & (D1 N .. " Dn C 1)

Hence, the first stage of agreement formation can be specified as follows:
Let @ be the set of all valid proposals currently active on the negotiation locale.

potentialAgreements (®) = {(P,, P,)|compatible(P,, P))

J
A 1#7}

When an agreement is formed, it can be verified a posteriori that the agreement
subsumes the proposals that were used to form it and therefore the original negotia-
tion template. Note that only two atomic operations are required to define the opera-
tions specified above:

e satisfiability (°(X < 1))
e subsumption (X C Y).

As noted above, a standard description logics reasoner is able to carry out both of
these. Satisfiability lies at the core of such a reasoner, as all other reasoning or infer-
ence techniques are transformed into satisfiability checks. The subsumption operator
is already defined by the OWL-Lite subClassOf, because our service descriptions are
expressed as OWL-Lite classes (i.e. description logics concepts). A description logics
reasoner can check whether two concepts subsume each other [22].

In the next section we give guidelines on how to write negotiation rules for various
negotiation mechanisms.

3.4 Negotiation Rules

Subsidiary agents have standard rule templates, where the rule asserts information in
their private fact base. The agent responds to this information, executing appropriate
actions and sending messages according to the General Negotiation Protocol.

For example, the display rule in the Information Updater has the format:

(defrule display-rule ; declare the rule name
(negotiation
(...)) ; extract and process relevant parame-
ters

A Software Framework for Automated Negotiation 227

from the DL description in the payload?
=> (assert

(information-digest (...)))
; assert processed parameters to be published in
the info digest

The visibility rules have a similar format, and act as filters on new proposals. They
determine which participants can view which parameters of a new proposal. The in-
formation they assert is used by the Negotiation Host to mediate the view that differ-
ent negotiation participants have on the blackboard.

(defrule visibility-rule
(valid-proposal
(...)) ; extract and process relevant parame-
ters
(test (...)) ; test the required condition
=> (assert (visible-proposal (...)))
; 1f valid, assert that the proposal is visible

The termination rule in the Negotiation Terminator has the format:
(defrule termination-rule

(...) ; extract and process relevant parameters
(test (...)) ; test the termination condition

=> (assert (terminate <negotiation-id>)))

; 1f termination condition is met, assert nego-
tiation is terminated

Rules in the Protocol Enforcer (both posting and withdrawal) have a different for-
mat. Both when receiving protocols and withdrawal requests, the agent must check
whether a series of conditions are all true to determine its action. Because of JESS”s
cumbersome mechanism to support backward chaining, we implement these rules in
the format:

(defrule <rule-name>

(proposal (proposal-id ?Proposal-id)

(...)) ; extract any other relevant parameters
(test not(...)) ; REQUIRED CONDITION IN A NEGATED
FORM! !'!

=> (assert (failed <rule-name> ?proposal-id)))
; 1f the condition is NOT met, assert the proposal
is NOT wvalid

In this example and in some of the following, we omit the adaptation code for extracting
relevant parameters from the payload of the message that is sent from the participant to the
message. As an example of how the parameters are processed, the proposal exemplified in
section 3.3 would be asserted on the blackboard as:
(proposal
(proposal-id Alice-37)
;ID is generated by the Negotiation Host
(submitter Alice)

(role Seller) ; Alice wishes to sell...
(automobile
(make FIAT) ;.. a FIAT Punto....

(model Punto))
(price ?P\&: (>= 3000 ?P))) ;... reservation price: 3000.

228 Claudio Bartolini, Chris Preist, and Nicholas R. Jennings

The Protocol Enforcer has a meta-rule which rejects the proposal if there are any
such assertions in the database after the rules have executed, and accepts it otherwise.
It executes appropriate actions and sends messages as defined in the General Negotia-
tion Protocol.

4 Sample Mechanisms

In this section, we present a few examples of market mechanisms that the negotiation
framework can support. For each of the mechanisms we give a flavor of the rules that
need to be specified and the negotiation template and the negotiation proposals that
participants may exchange.

4.1 Single Item English Auction

Assume a Negotiation Host has advertised an agreement template as per section 3.3,
and has been contacted by Alice to sell her Fiat Punto via auction. The Host starts a
new negotiation. It generates an associated agreement template, which is a specialized
version of the one in 3.3, with the automobile slot instantiated with details of her Fiat
Punto. The host asserts facts about the auction on the blackboard

The negotiation rules which apply to the seller state that they make a single pro-
posal, and then remain silent. In the interests of space, we omit these. The proposal
Alice makes is as specified in section 3.3. This confirms the details of the good she is
selling, the expected delivery date, and specifies her reservation price of 3000. Facts
about the auction are updated, and now appear as stated in the footnote’ of section 3.4.

After this, buyers place bids in the form of proposals that satisfy the buyer proposal
validation rules. These are applied by the Protocol Enforcer, and have the format
described above (section 3.4). The conditions are:

[Posting rule] This tests that, if a buyer is posting a proposal, then the seller has al-
ready posted one.

(test (equal ?Role buyer)
(exists (active-proposal (...) (role seller)))

[Improvement rule] The price field of the buyer’s proposal must be a certain incre-
ment above the value of all previously posted buyer proposals. Hence the improve-
ment rule contains the test:

(test (> ?Price (+ ?Currently-Highest-Price ?bid-
increment)))

[Withdrawal rule] Auctions do not allow bids to be withdrawn once submitted.
Hence, the body of the withdrawal rule (in format specified earlier in this section -
posting and withdrawal rules) contains (test FALSE) and so always fails when
executed.

[Visibility rules] The seller’s initial proposal is visible to all the buyers.

However, the field in which the seller constrains the price to be above their reserva-
tion price cannot be viewed:

A Software Framework for Automated Negotiation ~ 229

(defrule visibility-rule
(active-proposal (proposal-id ?PID) (role seller))
(test (TRUE))

=> (assert
(visible-proposal

(proposal-id
(value ?PID)
(visibility all))

(price
(value ?Price)
(visibility none))

(...)))

A similarly structured rule states that all active buyer proposals are visible to all
participants. Optionally, the identity of a bidder can be maintained private.

[Display rule] The currently highest bid price is notified to all participants.

(defrule display-rule
(negotiation
(...)
(currently-highest-bid ?CHB))
=> (assert
(information-digest
(currently-highest-bid ?CHB)))

[Termination rule] Termination occurs if the auction is inactive for longer than the
termination window specified in the negotiation fact base. Hence the rule, in the for-
mat specified in the beginning of this section, contains the test:

(test (> ?Current-Time (+?Active-Proposal-Time ?Termi -
nation-Window))

Together with the information asserted in section 3, this results in Alice’s auction
terminating if it is inactive for 30 minutes.

[Agreement formation rules] When negotiation terminates, an agreement is formed
between the currently active buyer and the seller. The agreement states that the item
specified in the template is sold to the buyer at the price specified in the currently
active proposal.

(defrule agreement-formation-rule
(active-proposal
(proposal-id ?B-PID) (submitter ?BUYER)
(role buyer) (price ?PRICE))
(active-proposal
(proposal-id ?S-PID) (submitter ?SELLER)
(role seller) (price ?RES-PRICE))
(test
(> PRICE RES-PRICE))
=> (assert
(agreement
(buyer ?BUYER) (seller ?SELLER)
(price ?PRICE))))

230 Claudio Bartolini, Chris Preist, and Nicholas R. Jennings

4.2 The Continuous Double Auction

A many-to-many Continuous Double Auction can be implemented in our framework

by straightforward modification of the rules above. For example, the improvement

rule requires new bids/offers to be higher/lower than the currently active bid/offer.
We have one rule which matches with seller proposals, with test:

(test (> ?Price ?Currently-Lowest-Offer))

and a simlar rule for buyer proposals with test:
(test (> ?Price ?Currently-Highest-Bid))

The posting rule is modified to allow both buyer and seller proposals at any time.
In addition to the highest bid, the information digest also contains the lowest offer.
Termination occurs at a fixed time, so the test becomes:

(test (> ?Current-Time ?End-Time))

The only substantial change is in the agreement formation rule. Agreement is
formed whenever there is a bid greater than an offer.
Highest bids are matched with lowest offers, with the agreement at the midpoint.

(defrule agreement-formation-rule
(active-proposal

(proposal-id ?Seller-PID)

(price ?Seller-price))
(active-proposal

(proposal-id ?Buyer-PID)

(price ?Buyer-price))
(currently-highest-bid ?Buyer-Price)
(currently-highest-ask ?Seller-Price)

=> (assert

(agreement
(proposals
(?Seller-PID ?Buyer-PID))
(price (= (/ 2 (+ (?BP ?SP))..)))

After an agreement is made, the Information Updater will declare the next high-
est/lowest bid/offer to be active. This may result in more agreements being formed
immediately.

4.3 Simple Shop Front

The framework can also model one-to-one negotiation such as a simple shop front. In
this example the shop is a car dealership. The actors involved in the simple car dealer-
ship scenario are the car dealer and one or more buyers. A prospective buyer plays the
participant role, whereas the shopkeeper plays both the participant and the negotiation
host roles at the same time. The car dealership is modeled following the negotiation
locale abstraction.

Before negotiation begins, the shopkeeper decides the admission policy, negotia-
tion template, and negotiation and agreement formation rules.

Once again the template is identical to the one in the example given in section 3.3,
expressing the cars that the dealer is willing to sell, minimum price and earliest deliv-
ery date.

A Software Framework for Automated Negotiation 231

The car dealer adopts standard ‘shop front take it or leave it’ negotiation rules.
These state that*:

[Posting rule] A buyer may post a proposal at any time, irrespective of posted pro-
posals by other buyers. A seller may post proposals at any time.

[Termination rule] Termination occurs when there are no seller proposals posted in
the shop front

[Withdrawal rule] A seller may withdraw proposals at any time so long as they have
not been matched yet with buyer’s proposals. Proposals from the buyers are commit-
ting, so buyers cannot ever withdraw proposals.

The car dealer adopts standard shop front agreement formation rule:

[Agreement formation rule] Agreements are formed whenever a buyer posts a pro-
posal identical to the seller’s proposal.

After rules have been specified, negotiation can begin. The car dealer in its seller
role (Alice) submits proposals for all goods it sells. The seller’s proposals take a simi-
lar form as the example given in section 3.3.

If it expects high demand, it can place several identical proposals on the table for
the same good. If all proposals for a given good are accepted, and the car dealer still
has more in stock, it resubmits identical proposals. A buyer submits a proposal, an
identical copy of the car dealer’s proposal, when it wishes to purchase a given good.
Agreement formation occurs as the car dealer— in the referee role — identifies valid
buyer proposals and sends agreements to the buyers.

4.4 Multi-party Contracts

The examples given so far addressed the formation of two-party contracts, whatever
the number of participants. The negotiation framework though extends quite naturally
to the case of agreements among multiple parties playing different roles, noting a
couple of observations.

To begin with, admission can be conditioned to being able to bid for one or more
roles. Participants submit proposals specifying the role they want to play, selected
from the role (or roles) for which they have been admitted. The proposals may also
constrain who should (or should not) play the other roles.

Secondly, visibility rules enforce that participants that have been admitted to play a
certain role have a restricted view over other participant’s proposals. Each participant
will only be able to see the part of the other proposals that are directly relevant to the
role they want to fulfill. This enables entities to propose modifications to relevant
parts of the contract without having access to other non-relevant parts. When all par-
ties have agreed, each will have proposed a partly-instantiated contract that is consis-
tent with all the others and hence the negotiation host will be able to produce the final
contract according to the agreement formation rules.

As an example, imagine that a multi-party agreement is sought between a building
contractor and other participants to fulfill the role of a carpenter, builder, and electri-

4 For this example we do not present the rules in Jess language for reasons of space. However,
they are similar enough to the ones in the two previous examples that the attentive reader will
not have problems deriving them.

232 Claudio Bartolini, Chris Preist, and Nicholas R. Jennings

cian. Participants are admitted to the negotiation bidding to undertake the roles that
they specialize for. The agreement template will include general information accessi-
ble to all parties, such as general recital information, boiler plate terms etc. Other
parts of the agreement template might be restricted to fewer roles. The rest of the
negotiation process is carried out exactly as described in section 2.1. The only differ-
ence is that the resulting agreement will concern more than two roles which therefore
will be assigned to more than two participants.

5 Related Work

Research on agent negotiation protocols has primarily focused on the specification of
specific protocols, often using conversations [23] specified as finite state machines.
For example, Parsons et. al. define a flexible protocol for one-to-one bargaining using
this approach [6]. The FIPA agent standardization effort has defined various interac-
tion protocols, including English and Dutch auctions, as interchanges of messages in
FIPA ACL [8]. These are effectively a set of one-to-one conversations which must be
coordinated. Pitt et. al.[24] define a semantic framework around FIPA ACL to allow
the easier specification of multi-party interactions by adding structured conversation
identifiers and a richer representation of protocol states. WS-Agreement [3] defines a
simple interaction protocol aimed at supporting one-to-one negotiation. Our approach
differs from these in that rather than defining a library of protocols, we define a gen-
eral protocol that can be parameterized with rules.

Research in negotiation in the semantic web domain spun from the concern of
demonstrating that semantic web languages can provide useful semantic support to
the processes of matchmaking and negotiation [19] therefore only marginally touch-
ing on the problem of defining interaction protocols.

Naftaly Minsky’s Law Governed Interactions (LGI) [25] is a paradigm for agent
co-ordination that can presents similarities to our approach. However, the scope of
LGI is much wider than just negotiation and applies to a much wider variety of coor-
dination mechanisms. It’s true that LGI has been applied to peer-to-peer auctions
[26], but the focus of that work was mainly on the peer-to-peer aspect, aiming to dis-
pense with a centralized service for auctions. In contrast, our framework is especially
designed for providing a protocol that can embody multiple negotiation mechanisms.
In this chapter, we describe a reference implementation for the framework based on
Jess, but one could envisage populating the taxomomy of negotiation rules that we
propose through LGI laws. Similar considerations apply to comparing the framework
here described with the work of Artikis et al. [27].

Esteva et.al. [13] have defined a formal approach to specifying electronic institu-
tions in which agents interact. This goes beyond other work on protocols in the addi-
tional abstractions it provides. It associates different protocols to scenes, and provides
means for specifying transition conditions from one scene to another together with
normative rules associated with transition. Our work is complementary to this, in that
our focus is primarily on a single scene (negotiation) and providing flexibility
within it.

Reeves et. al. [28] have also built on this to configure a general auction server with
auction rules and contract templates. Their architecture is server-based, rather than
agent-based, and participant agents must still be hard-coded with specific protocols.

A Software Framework for Automated Negotiation 233

Our general negotiation protocol allows us to handle richer negotiation mechanisms
than they support. Other architectures for negotiating agents have been proposed [29]
that present a neater separation of concerns between the definition of the protocols
according to the principles described in this chapter and the construction of the nego-
tiating agents.

Wurman et. al. [30] carried out a thorough analysis of the auction design space,
classifying auction mechanisms according to different parameters. This work, focus-
ing primarily on auction rules, provided valuable input to our analysis.

Mechanism design has recently had a surge in popularity [15, 5] as a foundation
for building multi-agent software systems. We envisage that the generic negotiation
framework described in this chapter could provide a useful platform for experiment-
ing with it, given the flexibility that it provides for the declarative definition of inter-
action protocols underpinning different the negotiation mechanisms.

6 Conclusions

In this chapter, we have discussed the shortcomings of the representation of negotia-
tion mechanisms in standardization activities such as FIPA [2] and the Global Grid
Forum’s (GGF) WS-Agreement [3]. Specifically, we have shown that the protocol
approach adopted by them and many others results in only part of a mechanism being
explicitly formalised and standardised, which can result in significant drawbacks from
a software engineering perspective. Alternatively, we propose a modular approach to
negotiation mechanisms: a generalized interaction protocol which can be specialised
with declarative rules. We provide a taxonomy of such rules and a software frame-
work that implements this approach and give examples of rules for various negotia-
tion mechanisms. The aim of our framework is to go beyond what is currently offered
by the existing standards, to provide a flexible approach to defining negotiation proto-
cols enforcing the rules of the negotiation without having to adopt a fully-fledged
coordination mechanism a la LGI [25]. We believe that our framework covers a wide
variety of negotiation mechanisms — of which we give a flavor in section 4 - and gives
a mechanism designer the possibility of easily creating new combination of negotia-
tion rules.

References

1. Bartolini, C., Preist, C., Jennings N.R.: Architecting for Reuse: A Software Framework for
Automated Negotiation, in Giunchiglia, F., Odell, J., Weiss G. (Eds.): Agent-Oriented Soft-
ware Engineering III (2002), Springer-Verlag LNCS 2585/2003.

2. Foundation for Physical Agents. Fipa abstract architecture specification, 2000. Available at
www.fipa.org.

3. Andrieux A.et. Al.: Web-Services Agreement Specification (WS-Agreement) Global Grid
Forum Recommendation. Available at www.ggf.org

4. Dean, M., Schreiber G.: OWL Web Ontology Language Reference W3C Recommendation.
Available at www.w3c.org

5. Dash, R. K, Jennings, N. R., Parks, D. C.: Computational Mechanism Design: A Call to
Arms. IEEE Intelligent Systems (2003), vol. 18 (6), 40-47.

6. Parsons, S., Sierra, C., Jennings, N.R.: Agents that reason and negotiate by arguing. Journal
of Logic and Computation (1998), 8(3), 261-292.

234

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Claudio Bartolini, Chris Preist, and Nicholas R. Jennings

Wurman, P.R., Wellman, M. P., Walsh, W.E.: The Michigan Internet AuctionBot: A con-
figurable auction server for human and software agents. In Sycara, K. P., Wooldridge M.
(eds), Proceedings of the 2nd International Conference on Autonomous Agents (Agents’98)
(1998), 301-308, New York, 9-13, 1998. ACM Press.

. Foundation for Physical Agents. FIPA Interaction Protocol Library Specification, 2000.

Available at www .fipa.org

. Jennings, N. R., Norman, T. J., Faratin, P.. ADEPT: An agent-based approach to business

process management. ACM SIGMOD Record (1998), 27(4), 32-39.

Byde, A., Preist, C., Jennings, N.R.: Decision procedures for multiple auctions. In Proceed-
ings of the 1st Joint International Conference on Autonomous Agents and Multi-Agent Sys-
tems (2002), 613-620.

Sandholm, T.: Automated Mechanism Design: A New Application Area for Search Algo-
rithms. In proceedings International Conference on Principles and Practice of Constraint
Programming (CP-03), 2003.

Boyar. J., Chaum, D., Damgard, 1. Pedersen, T.: Convertible Undeniable Signatures;
Crypto 90, LNCS 537, Springer-Verlag, Berlin (1991), 189-205.

Esteva, M., Rodriguez, J. A., Sierra, C., Garcia, P., Arcos, J. L.,: On the formal specifica-
tions of electronic institutions, In Dignum F. Sierra, C. (eds.) Agent-mediated Electronic
commerce (The European AgentLink Perspective), Springer LNAI (2000)

Bartolini, C. Preist, C., Jennings N.R.: A Generic Software Framework for Automated Ne-
gotiation, HP Laboratories Technical Report HPL-2002-2, (2002)

Bellifemmine, F., Poggi, A., and Rimassa, G. Jade - A FIPA compliant Agent Framework.
In Proc. 4th International Conference on Practical Applications of Intelligent Agents and
Multi-Agent Systems (1999)

Foundation for Physical Agents. FIPA ACL Message Structure Specification, 2000. Avail-
able at www.fipa.org

Hoffmann, O., Stumptner, M., Chalabi, T.: A perspective based approach to design. In
Workshop on Planning, Scheduling and Configuration, KI2001 (2001)

Bartolini, C. and Casassa-Mont M, Digital Credentials and Authorization to Enhance Trust
in Negotiation within E-services Marketplaces. In Proc. 7th HP Openview University As-
sociation Plenary Workshop (2000).

Trastour, D., Bartolini, C., Preist C.: Semantic Web Support for the Business-to-business
E-Commerce Lifecycle In Computer Networks: The International Journal of Computer and
Telecommunications Networking, Vol. 42, Issue 5 (2003) Special Issue on The Semantic
Web: an Evolution for a Revolution - North Holland / Elsevier

van Harmelen, F. and Horrocks, I. Reference Description of the DAML+OIL Markup Lan-
guage. Available from www.daml.org, (2000)

Baaders, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Descrip-
tion Logic Handbook. Cambridge University Press (2002)

Horrocks I, Patel-Schneider, P.F.: Comparing subsumption optimizations. In Franconi, E.
De Giacomo, G. MacGregor, R.M., Nutt, W. Welty, C.A., Sebastiani, F. (eds), Collected
Papers from the International Description Logics Workshop (DL’98), pages 90-94. CEUR,
(1998).

Barbuceanu, M. and Fox, M.S. COOL: A language for describing coordination in multi-
agent systems. In Proc. First International Conference on Multi-Agent Systems, MIT Press,
(1995), 17-24.

Pitt, J., Guerin, F. and Stergiou, C.: Protocols and Intentional Specifications of Multi-Party
Agent Conversations for Brokerage and Auctions. In Proc. Fourth International Conference
on Autonomous Agents, ACM Press (2000), 269-276

Minsky, N. and Ungureanu, V. Law-Governed Interaction: A Coordination & Control
Mechanism for Heterogeneous Distributed Systems. in ACM Transactions on Software En-
gineering and Methodology (TOSEM) Vol 9.3, 273-305 (2000)

26.

217.

28.

29.

30.

A Software Framework for Automated Negotiation 235

Fontoura, M., Ionesu, M. and Minsky N. Law-Governed Peer-to-Peer Auctions In Proc. of
the eleventh international world wide web conference (WWW2002) Honolulu, Hawaii,
May (2002)

Artikis A., Sergot M. and Pitt J. Specifying Electronic Societies with the Causal Calculator.
In the Proceedings of the Agent-Oriented Software Engineering III (AOSE) workshop,
LNCS 2585, Springer, (2003)

Reeves, D., Wellman, M. and Grosof, B. Automated Negotiation from Declarative Contract
Descriptions. In Proc. Fifth International Conference on Autonomous Agents, (2001)

Ashri, R., Rahwan, 1. and Luck, M.: Architectures for Negotiating Agents, in Mueller,
M.V. Pechoucek, J.(eds). Multi-Agent Systems and Applications III, pages pp. 136-146.
Springer, (2003)

Wurman, P, Wellman, M. and Walsh W.: A Parameterization of the Auction Design Space,
in Games and Economic Behavior, 35 Vol. 1/2 (2001), 271-303

Efficient Agent Communication
in Multi-agent Systems

Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

Department of Computer Science
University of Illinois at Urbana-Champaign,
Urbana IL 61801, USA

{mjang,amrmomen, agha}@uiuc.edu

Abstract. In open multi-agent systems, agents are mobile and may
leave or enter the system. This dynamicity results in two closely re-
lated agent communication problems, namely, efficient message passing
and service agent discovery. This paper describes how these problems are
addressed in the Actor Architecture (AA). Agents in AA obey the oper-
ational semantics of actors, and the architecture is designed to support
large-scale open multi-agent systems. Efficient message passing is facil-
itated by the use of dynamic names: a part of the mobile agent name
is a function of the platform that currently hosts the agent. To facil-
itate service agent discovery, middle agents support application agent-
oriented matchmaking and brokering services. The middle agents may
accept search objects to enable customization of searches; this reduces
communication overhead in discovering service agents when the matching
criteria are complex. The use of mobile search objects creates a security
threat, as codes developed by different groups may be moved to the same
middle agent. This threat is mitigated by restricting which operations a
migrated object is allowed to perform. We describes an empirical eval-
uation of these ideas using a large scale multi-agent UAV (Unmanned
Aerial Vehicle) simulation that was developed using AA.

1 Introduction

In open agent systems, new agents may be created and agents may move from
one computer node to another. With the growth of computational power and
network bandwidth, large-scale open agent systems are a promising technology
to support coordinated computing. For example, agent mobility can facilitate
efficient collaboration with agents on a particular node. A number of multi-agent
systems, such as EMAF [3], JADE [4], InfoSleuth [16], and OAA [8], support
open agent systems. However, before the vision of scalable open agent systems
can be realized, two closely related problems must be addressed:

— Message Passing Problem: In mobile agent systems, efficiently sending mes-
sages to an agent is not simple because they move continuously from one
agent platform to another. For example, the original agent platform on which
an agent is created should manage the location information about the agent.

R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 236-253, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Efficient Agent Communication in Multi-agent Systems 237

However, doing so not only increases the message passing overhead, but it
slows down the agent’s migration: before migrating, the agent’s current host
platform must inform the the original platform of the move and may wait
for an acknowledgement before enabling the agent.

— Service Agent Discovery Problem: In an open agent system, the mail ad-
dresses or names of all agents are not globally known. Thus an agent may
not have the addresses of other agents with whom it needs to communi-
cate. To address this difficulty, middle agent services, such as brokering and
matchmaking services [25], need to be supported. However, current middle
agent systems suffer from two problems: lack of expressiveness—not all search
queries can be expressed using the middle agent supported primitives; and
incomplete information—a middle agent does not possess the necessary in-
formation to answer a user query.

We address the message passing problem for mobile agents in part by provid-
ing a richer name structure: the names of agents include information about their
current location. When an agent moves, the location information in its name is
updated by the platform that currently hosts the agent. When the new name
is transmitted, the location information is used by other platforms to find the
current location of that agent if it is the receiver of a message. We address the
service agent discovery problem in large-scale open agent systems by allowing
client agents to send search objects to be executed in the middle agent address
space. By allowing agents to send their own search algorithms, this mitigates
both the lack of expressiveness and incomplete information.

We have implemented these ideas in a Java-based agent system called the
Actor Architecture (or AA). AA supports the actor semantics for agents: each
agent is an autonomous object with a unique name (address), message pass-
ing between agents is asynchronous, new agents may be dynamically created,
and agent names may be communicated [1]. AA has been designed with a
modular, extensible, and application-independent structure. While AA is be-
ing used to develop tools to facilitate large-scale simulations, it may also be
used for other large-scale open agent applications. The primary features of AA
are: a light-weight implementation of agents, reduced communication overhead
between agents, and improved expressiveness of middle agents.

This paper is organized as follows. Section 2 introduces the overall structure
and functions of AA as well as the agent life cycle model in AA. Section 3
explains our solutions to reduce the message passing overhead for mobile agents
in AA, while Section 4 shows how the search object of AA extends the basic
middle agent model. Section 5 descries the experimental setting and presents an
evaluation of our approaches. Related work is explained in Section 6, and finally,
Section 7 concludes this paper with future research directions.

2 The Actor Architecture

AA provides a light-weight implementation of agents as active objects or ac-
tors [1]. Agents in AA are implemented as threads instead of processes. They

238 Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

use object-based messages instead of string-based messages, and hence, they do
not need to parse or interpret a given string message, and may use the type
information of each field in a delivered message. The actor model provides the
infrastructure for a variety of agent systems; actors are social and reactive, but
they are not explicitly required to be “autonomous” in the sense of being proac-
tive [28]. However, autonomous actors may be implemented in AA, and many
of our experimental studies require proactive actors. Although the term agent
has been used to mean proactive actors, for our purposes the distinction is not
critical. In this paper, we use the terms ‘agent’ and ‘actor’ as synonyms.
The Actor Architecture consists of two main components:

— AA platforms which provide the system environment in which actors exist
and interact with other actors. In order to execute actors, each computer
node must have one AA platform. AA platforms provide actor state man-
agement, actor communication, actor migration, and middle agent services.

— Actor library which is a set of APIs that facilitate the development of agents
on the AA platforms by providing the user with a high level abstraction of
service primitives. At execution time, the actor library works as the interface
between actors and their respective AA platforms.

An AA platform counsists of eight components (see Fig. 1): Message Manager,
Transport Manager, Transport Sender, Transport Receiver, Delayed Message
Manager, Actor Manager, Actor Migration Manager, and ATSpace.

AA Platform

<—>| Actor Migration Manager

| Delayed Message Manager |

Message Manager

| Transport Receiver |<—| Transport Manager | | Transport Sender |
I /Y
\ 4 \ 4
| Transport Sender | | Transport Manager |—>| Transport Receiver |
AA Platform

Fig. 1. Architecture of an AA Platform.

Efficient Agent Communication in Multi-agent Systems 239

The Message Manager handles message passing between actors. Every mes-
sage passes through at least one Message Manager. If the receiver actor of a
message exists on the same AA platform, the Message Manager of that platform
directly delivers the message to the receiver actor. However, if the receiver actor
is not on the same AA platform, this Message Manager delivers the message to
the Message Manager of the platform where the receiver currently resides, and
finally that Message Manager delivers the message to the receiver actor. The
Transport Manager maintains a public port for message passing between differ-
ent AA platforms. When a sender actor sends a message to another actor on a
different AA platform, the Transport Sender residing on the same platform as
the sender receives the message from the Message Manager of that platform and
delivers it to the Transport Receiver on the AA platform of the receiver. If there
is no built-in connection between these two AA platforms, the Transport Sender
contacts the Transport Manager of the AA platform of the receiver actor to open
a connection so that the Transport Manager can create a Transport Receiver for
the new connection. Finally, the Transport Receiver receives the message and
delivers it to the Message Manager on the same platform.

The Delayed Message Manager temporarily holds messages for mobile actors
while they are moving from one AA platform to another. The Actor Manager of
an AA platform manages the state of actors that are currently executing as well
as the locations of mobile actors created on this platform. The Actor Migration
Manager manages actor migration.

The ATSpace provides middle agent services, such as matchmaking and bro-
kering services. Unlike other system components, an ATSpace is implemented
as an actor. Therefore, any actor may create an ATSpace, and hence, an AA
platform may have more than one ATSpaces. The ATSpace created by an AA
platform is called the default ATSpace of the platform, and all actors can obtain
the names of default ATSpaces. Once an actor has the name of an ATSpace,
the actor may send the ATSpace messages in order to use its services for finding
other actors that match a given criteria.

In AA, actors are implemented as active objects and are executed as threads;
actors on an AA platform are executed with that AA platform as part of one
process. Each actor has one actor life cycle state on one AA platform at any
time (see Fig. 2). When an actor exists on its original AA platform, its state
information appears within only its original AA platform. However, the state
of an actor migrated from its original AA platform appears both on its original
AA platform and on its current AA platform. When an actor is ready to process
a message its state becomes Active and stays so while the actor is processing
the message. When an actor initiates migration, its state is changed to Transit.
Once the migration ends and the actor restarts, its state becomes Active on
the new AA platform and Remote on the original AA platform. Following a user
request, an actor in the Active state may move to the Suspended state.

In contrast to other agent life cycle models (e.g. [10,18]), the AA life cycle
model uses the Remote state to indicate that an actor that was created on the
current AA platform is working on another AA platform.

240 Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

e I
Remote Suspended|
Move Start Resume Unknown
Destroy
Move Suspend
End Execute Create or
T T / Execute
Move Start
. J

Fig. 2. Actor Life Cycle Model.

3 Optimized Message Delivery

We describe the message delivery mechanisms used to support inter-actor com-
munications. Specifically, AA uses two approaches to reduce the communication
overhead for mobile actors that are not on their original AA platforms: location-
based message passing and delayed message passing.

3.1 Location-Based Message Passing

Before an actor can send messages to other actors, it should know the names
of the intended receiver actors. In AA, each actor has its own unique name
called UAN (Universal Actor Name). The UAN of an actor includes the location
information and the unique identification number of the actor as follows:

uan://128.174.245.49:37

From the above name, we can infer that the actor exists on the host whose IP
address is 128.174.245.49, and that the actor is distinguished from other actors
on the same platform with its unique identification number 37.

When the Message Manager of a sender actor receives a message whose re-
ceiver actor has the above name, it checks whether the receiver actor exists
on the same AA platform. If they are on the same AA platform, the Message
Manager finds the receiver actor on this AA platform and directly delivers the
message. Otherwise, the Message Manager of the sender actor delivers the mes-
sage to the Message Manager of the receiver actor. In order to find the AA
platform where the Message Manager of the receiver actor exists, the location
information 128.174.245.49 in the UAN of the receiver actor is used. When the
Message Manager on the AA platform with [P address 128.174.245.49 receives
the message, it finds the receiver actor there and delivers the message.

The above actor naming and message delivery scheme works correctly when
all actors are on their original AA platforms. However, because an actor may

Efficient Agent Communication in Multi-agent Systems 241

migrate from one AA platform to another, we extend the basic behavior of the
Message Manager with a forwarding service: when a Message Manager receives
a message for an actor that has migrated, it delivers the message to the current
AA platform of the mobile actor. To facilitate this service, each AA platform
maintains the current locations of actors that were created on it, and updates
the location information of actors that have come from other AA platforms on
their original AA platforms.

The problem with using only universal actor names for message delivery is
that every message for a migrated actor still has to pass through the original AA
platform in which the actor was created (Fig. 3.a). This kind of blind indirection
may happen even in situations where the receiver actor is currently on an AA
platform that is near the AA platform of the sender actor. Since message passing
between actor platforms is relatively expensive, AA uses Location-based Actor
Name (LAN) for mobile actors in order to generally eliminate the need for
this kind of indirection. Specifically, the LAN of an actor consists of its current
location and its UAN as follows:

lan://128.174.244.147//128.174.245.49:37

The current location of a mobile actor is set by an AA platform when the
actor arrives on the AA platform. If the current location is the same as the
location where an actor was created, the LAN of the actor does not have any
special information beyond its UAN.

Under the location-based message passing scheme, when the Message Man-
ager of a sender actor receives a message for a remote actor, it extracts the
current location of the receiver actor from its LAN and delivers the message to
the AA platform where the receiver actor exists. The rest of the procedure for
message passing is similar to that in the UAN-based message passing scheme.
Fig. 3.b shows how the location-based message passing scheme works. Actor one
with ual://C//A:15 sends its first message to actor two through the original
AA platform of actor two because actor one does not know the location of ac-
tor two. This message includes the location information about actor one as the
sender actor. Therefore, when actor two receives the message, it knows the loca-
tion of actor one, and it can now directly send a message to actor one. Similarly,
when actor one receives a message from actor two, it learns the location of actor
two. Finally, the two actors can directly communicate with each other without
mediation by their original AA platforms.

In order to use the LAN address scheme, the location information in a LAN
should be recent. However, mobile actors may move repeatedly, and a sender
actor may have old LANs of mobile actors. Thus a message for a mobile actor
may be delivered to its previous AA platform from where the actor left. This
problem is addressed by having the old AA platform deliver the message to the
original AA platform where the actor was created; the original platform always
manages the current addresses of its actors. When the receiver actor receives the
message delivered through its original AA platform, the actor may send a null

242

Platform A

Actor one (uan://A:15)
migrates to Platform C.

Agent two (uan://A:16)
migrates to Platform B.

Agent one sends
a message to actor two.

Agent two replies to
actor one.

Agent two sends
a message to actor one.

Agent one replies to
actor two.

1
\

Platform B

Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

a. UAN-based Message Passing

Platform A

Actor one (uan://A:15)
migrates to Platform C.

Agent two (uan://A:16)
migrates to Platform B.

Agent one sends
a message to actor two.

Agent two replies to
actor one.

Agent two sends
a message to actor one.

Agent one replies to
actor two.

Platform B

PR

b. Location—based Message Passing

Fig. 3. Message Passing between Mobile Actors.

Platform C

Platform C

Efficient Agent Communication in Multi-agent Systems 243

message with its LAN to update its location at the sender actor. Therefore, the
sender actor can use the updated information for subsequent messages.

3.2 Delayed Message Passing

While a mobile actor is moving from one AA platform to another, the current AA
platform of the actor is not well defined. In AA, because the location information
of a mobile actor is updated after it finishes migration, its original AA platform
thinks the actor still exists on its old AA platform during migration. Therefore,
when the Message Manager of the original AA platform receives a message for
a mobile actor, it sends the message to the Message Manager of the old AA
platform thinking that it is still there. After the Message Manager of the old AA
platform receives the message, it forwards the message to the Message Manager
of the original AA platform. Thus, a message is continuously passed between
these two AA platforms until the mobile actor updates the Actor Manager of its
original AA platform with its new location.

In order to avoid unnecessary message thrashing, we use the Delayed Message
Manager in each AA platform. After the actor starts its migration, the Actor
Manager of the old AA platform changes its state to be Transit. From this
moment, the Delayed Message Manager of this platform holds messages for this
mobile actor until the actor reports that its migration has ended. After the mobile
actor finishes its migration, its new AA platform sends its old AA platform and
its original AA platform a message to inform them that the migration process
has ended. When these two AA platforms receive this message, the original AA
platform changes the state of the mobile actor from Transit to Remote while
the old AA platform removes all information about the mobile actor, and the
Delayed Message Manager of the old AA platform forwards the delayed messages
to the Message Manager of the new AA platform of the actor.

4 Active Brokering Service

An ATSpace supports active brokering services by allowing agents to send their
own search algorithms to be executed in the ATSpace address space [14]. We
compare this service to current middle agent services.

Many middle agents are based on attribute-based communication. Service
agents register themselves with the middle agent by sending a tuple whose at-
tributes describe the service they advertise. To find the desired service agents, a
client agent supplies a tuple template with constraints on attributes. The middle
agent then tries to find service agents whose registered attributes match the sup-
plied constraints. Systems vary more or less according to the types of constraints
(primitives) they support. Typically, a middle agent provides exact matching or
regular expression matching [2,11,17]. As we mentioned earlier, this solution
suffers from a lack of expressiveness and incomplete information.

For example, consider a middle agent with information about seller agents.
Each service agent (seller) advertises itself with the following attributes <actor

244 Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

name, seller city, product name, product price>. A client agent with the
following query is stuck:

Q1: What are the best two (in terms of price) sellers that offer computers and
whose locations are roughly within 50 miles of me?

Considering the current tuple space technology, the operator “best two” is
clearly not supported (expressiveness problem). Morever, the tuple space does
not include distance information between cities (incomplete information prob-
lem). Faced with these difficulties, a user with this complex query Q1 has to
transform it into a simpler one that is accepted by the middle agent which re-
trieves a superset of the data to be retrieved by Q1. In our example, a simpler
query could be:

Q2: Find all tuples about sellers that sell computers.

An apparent disadvantage of the above approach is the movement of a large
amount of data from the middle agent space to the buyer agent, especially if Q2
is semantically distant from Q1. In order to reduce communication overhead,
ATSpace allows a sender agent to send its own search algorithm to find service
agents, and the algorithm is executed in the ATSpace. In our example, the buyer
agent would send a search object that would inspect tuples in the middle agent
and select the best two sellers that satisfy the buyer criteria.

4.1 Security Issues

Although active brokering services mitigate the limitations of middle agents, such
as brokers or matchmakers, they also introduce the following security problems
in ATSpaces:

— Data Integrity: A search object may not modify tuples owned by other actors.

— Denial of Service: A search object may not consume too much processing
time or space of an ATSpace, and a client actor may not repeatedly send
search objects to overload an ATSpace.

— Illegal Access: A search object may not carry out unauthorized accesses or
illegal operations.

We address the first problem by preventing the search object from modifying
tuple data of other actors. This is done by supplying methods of the search object
with a copy of the data in the ATSpace. However, when the number of tuples
in the ATSpace is large, this solution requires extra memory and computation
resources. Thus the ATSpace supports the option of delivering a shallow copy
of the original tuples to the search object at the risk of data being changed by
search objects as such scheme may compromise the data integrity.

To prevent malicious objects from exhausting the ATSpace computational
resource, we deploy user-level thread scheduling as depicted in Fig. 4. When
a search object arrives, the object is executed as a thread and its priority is

Efficient Agent Communication in Multi-agent Systems 245

~
ATSpace
Y
Tuple Space Tuple Space Manager
ATSpace
Manager
v 1 job queues
[——=—~>>~ high
@ p;igority
D — iddl
[~]
prority
J

Fig. 4. Architecture of an ATSpace.

set to high. If the thread executes for a long time, its priority is continuously
downgraded. Moreover, if the running time of a search object exceeds a certain
limit, it may be destroyed by the tuple space manager.

To prevent unauthorized accesses, if the ATSpace is created with an access
key, then this key must accompany every message sent from client actors. In this
case, actors are allowed only to modify their own tuples. This prevents removal
or modification of tuples by unauthorized actors.

5 Experiments and Evaluation

The AA platforms and actors have been implemented in Java language to sup-
port operating system independent actor mobility. The Actor Architecture is
being used for large-scale UAV (Unmanned Aerial Vehicle) simulations. These
simulations investigate the effects of different collaborative behaviors among a
large number of micro UAVs during their surveillance missions over a large num-
ber of moving targets [15]. For our experiments, we have tested more than 1,000
actors on four computers: 500 micro UAVs, 500 targets, and other simulation
purpose actors are executed. The following two sections evaluate our solutions.

5.1 Optimized Message Delivery

According to our experiments, the location-based message passing scheme in AA
reduces the number of hops (over AA platforms) that a message for a mobile
actor goes through. Since an agent has the location information about its col-
laborating agents, the agent can carry this information when it moves from one
AA platform to another. With location-based message passing, the system is
more fault-tolerant; since messages for a mobile actor need not pass through the
original AA platform of the actor, the messages may be correctly delivered to
the actor even when the actor’s original AA platform is not working correctly.

246 Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

Moreover, delayed message passing removes unnecessary message thrashing
for moving agents. When delayed message passing is used, the old AA platform
of a mobile actor needs to manage its state information until the actor finishes
its migration, and the new platform of the mobile actor needs to report the
migration state of the actor to its old AA platforms. In our experiments, this
overhead is more than compensated; without delayed message passing the same
message may get delivered seven or eight times between the original AA platform
and the old AA platform while a mobile actor is moving. If a mobile actor takes
more time for its migration, this number may be even greater.

5.2 Active Brokering Service

The performance benefit of ATSpace can be measured by comparing its active
brokering services with the data retrieval services of a template-based general
middle agent supporting the same service along four different dimensions: the
number of messages, the total size of messages, the total size of memory space
on the client and middle agent AA platforms, and the computation time for the
whole operation. To analytically evaluate ATSpaces, we will use the scenario
mentioned in section 4 where a service requesting agent has a complex query
that is not supported by the template-based model.

First, with the template-based service, the number of messages is n+2 where
n is the number of service agents that satisfy a complex query. This is because the
service requesting agent has to first send a message to the middle agent to bring a
superset of its final result. This costs two messages: a service request message to
the middle agent (Service Requesttemplate) that contains Q2 and a reply mes-
sage that contains agent information satisfying Q2 (Service Replytemplate)-
Finally, the service requesting agent sends n messages to the service agents that
match its original criteria. With the active brokering service, the total number
of messages is n + 1. This is because the service requesting agent need not worry
about the complexity of his query and only sends a service request message
(Service RequestpTgpace) to the ATSpace. This message contains the code
that represents its criteria along with the message that should be sent to the
agents which satisfy these criteria. The last n messages have the same explana-
tion as in the template-based service.

While the number of messages in the two approaches does not differ that
much, the total size of these messages may have a huge difference. In both
approaches, a set of n messages needs to be sent to the agents that satisfy the
final matching criteria. Therefore, the question of whether or not active brokering
services result in bandwidth saving depends on the relative size of the other
messages. Specifically the difference in bandwidth consumption (DBC') between
the template-based middle agent and the ATSpace is given by the following
equation:

DBC = [size(Service Requestienplate) —
size(Service RequestpTspace)] +

size(Service Replyy emplate)

Efficient Agent Communication in Multi-agent Systems 247

In general, since the service request message in active brokering services is
larger as it has the search object, the first component is negative. Therefore,
active brokering services will only result in a bandwidth saving if the increase in
the size of its service request message is smaller than the size of the service reply
message in the template-based service. This is likely to be true if the original
query (Q1) is complex such that turning it into a simpler one (Q2) to retrieve
a superset of the result would incur a great semantic loss and as such would
retrieve much extra agent information from the middle agent.

Third, the two approaches put a conflicting requirement on the amount of
space needed on both the client and middle agent machines. In the template-
based approach the client agent needs to provide extra space to store the tuples
returned by Q2. On the hand, the ATSpace needs to provide extra space to store
copies of tuples given to search objects. However, a compromise can be made
here as the creator of the ATSpace can choose to use the shallow copy of tuples.

Fourth, the difference in computation times of the whole operation in the two
approaches depends on two factors: the time for sending messages and the time
for evaluating queries on tuples. The tuples in the ATSpace are only inspected
once by the search object sent by the service requesting agent. However, in the
template-based middle agent, some tuples are inspected twice. First, in order
to evaluate Q2, the middle agent needs to inspect all the tuples that it has.
Second, these tuples that satisfy Q2 are sent back to the service requesting
agent to inspect them again and retain only those tuples that satisfy Q1. If Q1
is complex then Q2 will be semantically distant from Q1, which in turns has two
ramifications. First, the time to evaluate Q2 against all the tuples in the middle
agent is small relative to the time needed to evaluate the search object over them.
Second, most of the tuples on the middle agent would pass Q2 and be sent back
to be re-evaluated by the service requesting agent. This reevaluation has nearly
the same complexity as running the search object code. Thus we conclude that
when the original query is complex and external communication cost is high, the
active brokering service will result in time saving.

Apart from the above analytical evaluation, we have run a series of experi-
ments on the UAV simulation to substantiate our claims. (Interested readers may
refer to [13] for more details.) Fig. 5 demonstrates the saving in computational
time of an ATSpace compared to a template-based middle agent that provides
data retrieval services with the same semantic. Fig. 6 shows the wall clock time
ratio of a template-based middle agent to an ATSpace. In these experiments,
UAVs use either active brokering services or data retrieval services to find their
neighboring UAVs. In both cases, the middle agent includes information about
locations of UAVs and targets. In case of the active brokering service, UAVs send
search objects to an ATSpace while the UAVs using data retrieval service send
tuple templates. The simulation time for each run is around 35 minutes, and the
wall clock time depends on the number of agents. When the number of agents
is small, the difference between the two approaches is not significant. However,
as the number of agents is increased, the difference becomes large.

248 Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

600 23
=4~ ATSpace
-@ - Template-based Middle Agent K] 22
500y 2.1
- o ol
£ 400 s 2
® o 1.9
£ £
= 300} Z1s
8 8
o S 17t
= ool =
g2 £ 16f
100¢ 81
1.4r
o ‘ ‘ ‘ ‘ S ‘ ‘ ‘ ‘
200 400 600 800 1000 200 400 600 800 1000
Number of Agents Number of Agents
Fig.5. Wall Clock Time (Min) for Fig.6. Wall Clock Time Ratio
ATSpace and Template-based Middle of Template-based Middle Agent-to-
Agent. ATSpace.

Fig. 7 depicts the number of messages required in both cases. The number
of messages in the two approaches is quite similar but the difference is slightly
increased according to the number of agents. Note that the messages increase
almost linearly with the number of agents, and that the difference in the number
of messages for a template-based middle agent and an ATSpace is small; it is in
fact less than 0.01% in our simulations.

-6~ ATSpace
-® - Template-based Middle Agent

14+

Number of Messages (M)

200 400 600 800 1000
Number of Agents

Fig. 7. The Number of Messages for ATSpace and Template-based Middle Agent.

Fig. 8 shows the total message size required in the two approaches, and Fig. 9
shows the total message size ratio. When the search queries are complex, the total
message size in the ATSpace approach is much less than that in the template-
based middle agent approach. In our UAV simulation, search queries are rather
complex and require heavy mathematical calculations, and hence, the ATSpace
approach results in a considerable bandwidth saving. It is also interesting to
note the relationship between the whole operation time (as shown in Fig. 5) and
the bandwidth saving (as shown in Fig. 8). This relationship supports our claim

Efficient Agent Communication in Multi-agent Systems 249

w
@

—0—‘ATSpace ‘
-® - Template-based Middle Agent
30F s 1.8
3 s o
= . =
325* i % 1.7¢
P S
S 20/ % 161
2 s
= 5
= 15 s
19 %)
N @
@ 1o £ 141
g I
o
5¢ 1.3F
0 1.2
200 400 600 800 1000 200 400 600 800 1000
Number of Agents Number of Agents
Fig. 8. Total Message Size (GBytes) Fig.9. Total Message Size Ratio
for ATSpace and Template-based for Template-based Middle Agent-
Middle Agent. to-ATSpace.

that the saving in the total operation time by the ATSpace is largely due to its
superiority in efficiently utilizing the bandwidth.

6 Related Work

The basic mechanism of location-based message passing is similar to the mes-
sage passing in Mobile IP [20], although its application domain is different. The
original and current AA platforms of a mobile actor correspond to the home and
foreign agents of a mobile client in Mobile IP, and the UAN and LAN of a mo-
bile actor are similar to the home address and care-of address of a mobile client
in Mobile IP. However, while the sender node in Mobile IP manages a binding
cache to map home addresses to care-of addresses, the sender AA platform in
AA does not have a mapping table. Another difference is that in mobile IP, the
home agent communicates with the sender node to update the binding cache.
However, in AA this update can be done by the agent itself when it sends a
message that contains its address.

The LAN (Location-based Actor Name) may also be compared to UAL (Uni-
versal Actor Locator) in SALSA [27]. In SALSA, UAL represents the location of
an actor. However, SALSA uses a middle agent called Universal Actor Naming
Server to locate the receiver actor. SALSA’s approach requires the receiver ac-
tor to register its location at a certain middle agent, and the middle agent must
manage the mapping table.

The ATSpace approach, which is based on the tuple space model, is related
to Linda [6]. In the Linda model, processes communicate with other processes
through a shared common space called a blackboard or a tuple space without
considering references or names of other processes [6,21]. This approach was used
in several agent frameworks, for example EMAF [3] and OAA [8]. However, these
models support only primitive features for pattern-based communication among
processes or agents. From the middle agent perspective, Directory Facilitator in

250 Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

the FIPA platform [10], ActorSpace [2], and Broker Agent in InfoSleuth [16] are
related to our research. However, these systems do not support customizable
matching algorithms.

From the expressiveness perspective, some work has been done to extend
the matching capability of the basic tuple space model. Berlinda [26] allows a
concrete entry class to extend the matching function, and TS [12] uses policy
closures in a Scheme-like language to customize the behavior of tuple spaces.
However, these approaches do not allow the matching function to be changed
during execution time. At the other hand, OpenSpaces [9] provides a mechanism
to change matching polices during the execution time. OpenSpaces groups en-
tries in its space into classes and allows each class to have its individual matching
algorithm. A manager for each class of entries can change the matching algo-
rithm during execution time. All agents that use entries under a given class are
affected by any change to its matching algorithm. This is in contrast to the
ATSpace where each agent can supply its own matching algorithm without af-
fecting other agents. Another difference between OpenSpaces and ATSpaces is
that the former requires a registration step before putting the new matching
algorithm into action, but ATSpace has no such requirement.

Object Space [22] allows distributed applications implemented in the C++
programming language to use a matching function in its template. This matching
function is used to check whether an object tuple in the space is matched with the
tuple template given in rd and in operators. However, in the AT Space the client
agent supplied search objects can have a global overview of the tuples stored
in the shared space and hence can support global search behavior rather than
the one tuple based matching behavior supported in Object Space. For example,
using the ATSpace a client agent can find the best ten service agents according
to its criteria whereas this behavior cannot be achieved in Object Space.

TuCSoN [19] and MARS [5] provide programmable coordination mechanisms
for agents through Linda-like tuple spaces to extend the expressive power of tu-
ple spaces. However, they differ in the way they approach the expressiveness
problem; while TuCSoN and MARS use reactive tuples to extend the expres-
sive power of tuple spaces, the ATSpace uses search objects to support search
algorithms defined by client agents. A reactive tuple handles a certain type of
tuples and affects various clients, whereas a search object handles various types
of tuples and affects only its creator agent. Therefore, while TuCSoN and MARS
extend the general search ability of middle agents, AT Space supports application
agent-oriented searching on middle agents.

Mobile Co-ordination [23] allows agents to move a set of multiple tuple space
access primitives to a tuple space for fault tolerance. In Jada [7], one primitive
may use multiple matching templates. In ObjectPlaces [24], dynamic objects are
used to change their state whenever corresponding objecplace operations are
being called. Although these approaches improve the searching ability of tuple
spaces with a set of search templates or dynamic objects, ATSpace provides
more flexibility to application agents with their own search code.

Efficient Agent Communication in Multi-agent Systems 251

7 Conclusion and Future Work

In this papers we addressed two closely related agent communication issues: effi-
cient message delivery and service agent discovery. Efficient message delivery has
been addressed using two techniques. First, the agent naming scheme has been
extended to include the location information of mobile agents. Second, messages
whose destination agent is moving are postponed by the Delayed Message Man-
ager until the agent finishes its migration. For efficient service agent discovery,
we have addressed the ATSpace, Active Tuple Space. By allowing application
agents to send their customized search algorithms to the ATSpace, application
agents may efficiently find service agents. We have synthesized our solutions to
the mobile agent addressing and service agent discovery problems in a multi-
agent framework.

The long term goal of our research is to build an environment that allows for
experimental study of various issues that pertains to message passing and ser-
vice agent discovery in open multi-agent systems and provide a principled way
of studying possible tensions that arise when trying to simultaneously optimize
each service. Other future directions include the followings: for efficient message
passing, we plan to investigate various trade-offs in using different message pass-
ing schemes for different situations. We also plan to extend the Delayed Message
Manager to support mobile agents who are contiguously moving between nodes.
For service agent discovery, we plan to elaborate on our solutions to the security
issues introduced with active brokering services.

Acknowledgements

The authors would like to thank the anonymous reviewers and Nageeb Abbasi
for their helpful comments and suggestions. This research is sponsored by the
Defense Advanced Research Projects Agency under contract number F30602-00-
2-0586.

References

1. G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, 1986.

2. G. Agha and C.J. Callsen. ActorSpaces: An Open Distributed Programming
Paradigm. In Proceedings of the 4th ACM Symposium on Principles and Prac-
tice of Parallel Programming, pages 23-32, May 1993.

3. S. Baeg, S. Park, J. Choi, M. Jang, and Y. Lim. Cooperation in Multiagent
Systems. In Intelligent Computer Communications (ICC ’95), pages 1-12; Cluj-
Napoca, Romania, June 1995.

4. F. Bellifemine, A. Poggi, and G. Rimassa. JADE - A FIPA-compliant Agent
Framework. In Proceedings of Practical Application of Intelligent Agents and Multi-
Agents (PAAM ’99), pages 97-108, London, UK, April 1999.

5. G. Cabri, L. Leonardi, and F. Zambonelli. MARS: a Programmable Coordination
Architecture for Mobile Agents. IEEE Computing, 4(4):26-35, 2000.

252

6.

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

N. Carreiro and D. Gelernter. Linda in Context. Communications of the ACM,
32(4):444-458, 1989.

P. Ciancarini and D. Rossi. Coordinating Java Agents over the WWW. World
Wide Web, 1(2):87-99, 1998.

P.R. Cohen, A.J. Cheyer, M. Wang, and S. Baeg. An Open Agent Architecture.
In AAATI Spring Symposium, pages 1-8, March 1994.

S. Ducasse, T. Hofmann, and O. Nierstrasz. OpenSpaces: An Object-Oriented
Framework for Reconfigurable Coordination Spaces. In A. Porto and G.C. Roman,
editors, Coordination Languages and Models, LNCS 1906, pages 1-19, Limassol,
Cyprus, September 2000.

Foundation for Intelligent Physical Agents. SC00023J: FIPA Agent Management
Specification, December 2002. http://www.fipa.org/specs/fipa00023/.

N. Jacobs and R. Shea. The Role of Java in InfoSleuth: Agent-based Exploita-
tion of Heterogeneous Information Resources. In Proceedings of Intranet-96 Java
Developers Conference, April 1996.

S. Jagannathan. Customization of First-Class Tuple-Spaces in a Higher-Order Lan-
guage. In Proceedings of the Conference on Parallel Architectures and Languages
- Vol. 2, LNCS 506, pages 254—-276. Springer-Verlag, 1991.

M. Jang, A. Ahmed, and G. Agha. A Flexible Coordination Framework for
Application-Oriented Matchmaking and Brokering Services. Technical Report
UIUCDCS-R-~2004-2430, Department of Computer Science, University of Illinois
at Urbana-Champaign, 2004.

M. Jang, A. Abdel Momen, and G. Agha. ATSpace: A Middle Agent to Support
Application-Oriented Matchmaking and Brokering Services. In IEEE/WIC/ACM
IAT (Intelligent Agent Technology)-2004, pages 393-396, Beijing, China, September
20-24 2004.

M. Jang, S. Reddy, P. Tosic, L. Chen, and G. Agha. An Actor-based Simulation
for Studying UAV Coordination. In 15th European Simulation Symposium (ESS
2003), pages 593-601, Delft, The Netherlnds, October 26-29 2003.

R.J. Bayardo Jr., W. Bohrer, R. Brice, A. Cichocki, J. Fowler, A. Helal,
V. Kashyap, T. Ksiezyk, G. Martin, M. Nodine, M. Rashid, M. Rusinkiewicz,
R. Shea, C. Unnikrishnan, A. Unruh, and D. Woelk. InfoSleuth: Agent-Based
Semantic Integration of Information in Open and Dynamic Environments. ACM
SIGMOD Record, 26(2):195-206, June 1997.

D.L. Martin, H. Oohama, D. Moran, and A. Cheyer. Information Brokering in
an Agent Architecture. In Proceedings of the Second International Conference on
the Practical Application of Intelligent Agents and Multi-Agent Technology, pages
467-489, London, April 1997.

D.G.A. Mobach, B.J. Overeinder, N.J.E. Wijngaards, and F.M.T. Brazier. Man-
aging Agent Life Cycles in Open Distributed Systems. In Proceedings of the 2003
ACM symposium on Applied Computing, pages 61-65, Melbourne, Florida, 2003.

A. Omicini and F. Zambonelli. TuCSoN: a Coordination Model for Mobile In-
formation Agents. In Proceedings of the 1st Workshop on Innovative Internet
Information Systems, Pisa, Italy, June 1998.

C.E. Perkins. Mobile IP. IEEE Communications Magazine, 35:84—99, May 1997.

K. Pfleger and B. Hayes-Roth. An Introduction to Blackboard-Style Systems Orga-
nization. Technical Report KSL-98-03, Stanford Knowledge Systems Laboratory,
January 1998.

A. Polze. Using the Object Space: a Distributed Parallel make. In Proceedings
of the 4th IEEE Workshop on Future Trends of Distributed Computing Systems,
pages 234-239, Lisbon, September 1993.

23

24.

25.

26.

27.

28.

Efficient Agent Communication in Multi-agent Systems 253

. A. Rowstron. Mobile Co-ordination: Providing Fault Tolerance in Tuple Space
Based Co-ordination Languages. In Proceedings of the Third International Con-
ference on Coordination Languages and Models, pages 196-210, 1999.

K. Schelfthout and T. Holvoet. ObjectPlaces: An Environment for Situated Multi-
Agent Systems. In Third International Joint Conference on Autonomous Agents
and Multiagent Systems - Volume 3 (AAMAS’04), pages 1500-1501, New York
City, New York, July 2004.

K. Sycara, K. Decker, and M. Williamson. Middle-Agents for the Internet. In
Proceedings of the 15th Joint Conference on Artificial Intelligences (IJCAI-97),
pages 578-583, 1997.

R. Tolksdorf. Berlinda: An Object-oriented Platform for Implementing Coordi-
nation Language in Java. In Proceedings of COORDINATION ’97 (Coordination
Languages and Models), LNCS 1282, pages 430-433. Pringer-Verlag, 1997.

C.A. Varela and G. Agha. Programming Dynamically Reconfigurable Open Sys-
tems with SALSA. ACM SIGPLAN Notices: OOPSLA 2001 Intriguing Technology
Track, 36(12):20-34, December 2001.

M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons, Ltd,
2002.

Adaptive Access Control
in Coordination-Based Mobile Agent Systems

Christine Julien', Jamie Payton?, and Gruia-Catalin Roman?

! Department of Electrical and Computer Engineering
The University of Texas at Austin
c.julien@mail.utexas.edu
2 Department of Computer Science and Engineering
Washington University in Saint Louis
{payton,roman}@wustl.edu

Abstract. The increased pervasiveness of mobile devices like cell phones,
PDAs, and laptops draws attention to the need for coordination among
these networked devices. The very nature of the environment requires
devices to interact opportunistically when resources are available. Such
interactions occur unpredictably as device users have no advance knowl-
edge of others they will encounter. The openness of these environments
also requires users to protect themselves and their data from unwanted
interactions while maintaining desired, yet unscripted, coordination. As
the ubiquity of communicating mobile devices increases, the number of
applications supported by the network grows drastically and managing
access control is crucial to such systems. Application agents must directly
manipulate and examine access policies because these networks are often
decoupled from a fixed infrastructure, rendering reliance on centralized
servers for authentication and access policies impractical. In this paper,
we explore context-aware access control policies tailored to the needs of
agent coordination in open environments that exhibit mobility. We pro-
pose and evaluate novel constructs to support such policies, especially in
the presence of large numbers of highly dynamic application agents.

1 Introduction

Ubiquitous computing devices communicate wirelessly, opportunistically form-
ing ad hoc networks not connected to a wired infrastructure. These networks can
include a handful of devices or thousands of heterogeneous components, making
coordinating and mediating their competing needs a massive task. In such en-
vironments, distributed applications exchange information or coordinate tasks.
These applications are commonly structured as logical networks of mobile agents.
Mobile agents (or application agents) carry all or part of a particular applica-
tion’s behavior and are empowered with the ability to move through the network
of physically mobile devices. Much research focuses on developing middleware
to facilitate interactions among these highly dynamic application agents.

This paper focuses on systems that use tuple spaces for coordination, The
original Linda model [1] provides a centralized tuple space where application

R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 254-271, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Adaptive Access Control in Coordination-Based Mobile Agent Systems 255

agents exchange information using content-based matching of patterns against
data. Variations on this theme adapt it to the mobile environment where a cen-
tral repository is not feasible. The benefits of a tuple space model are twofold.
First, the tuple space affords a decoupled manner of communication, eliminat-
ing the need for a priori knowledge of the identities of communication partners.
This facilitates flexible coordination in open environments in which mobile agents
come and go without notice. Second, the model masks the complex communica-
tion details associated with handling frequent, unannounced disconnections that
characterize mobile networks. This allows novice programmers to create complex
applications in environments for which it is generally difficult to program.

Tuple space implementations have enjoyed much popularity not only within
the research community, but also in the commercial sector, where applications
have reached real-world deployed status. OptimalGrid [2] uses IBM’s T'Spaces [3]
to coordinate parallel processes in large-scale computations. TSpaces also sup-
ports communication among devices in an automobile, among components of a
smart house, and in vending machine maintenance. JavaSpaces [4] supports the
Jini service infrastructure and has been deployed in many situations including
the integration of proprietary law enforcement databases to enhance information
availability and the creation of tourism networks linking potential travelers, air-
lines, and hotels. More recently, a number of mobile agent middleware systems
designed for ad hoc networks have begun to utilize tuple space based coordina-
tion including LIME [5], EgoSpaces [6], and MARS [7]. These systems address
tuple space coordination in highly dynamic environments.

In open and dynamic mobile systems, security concerns of three types arise:
protecting hosts from malicious agents, protecting agents from tampering hosts,
and securing data. Commonly referenced approaches [8] address the first two con-
cerns in mobile agent systems. Executing agents using “safe interpreters” [9-11]
provides a sandboxing effect that protects hosts from errant code. Proof-carrying
code [12] can verify an agent before it runs on a new host. D’Agents [10] uses
public-key cryptography to authenticate incoming agents. The more difficult
problem of protecting agents from tampering hosts comes in two forms: detect-
ing a malicious event and preventing the leakage of sensitive information. The
former can be accomplished by examining execution traces while encryption
schemes [13] have helped to preserve an agent’s secrecy. Finally, undetachable
threshold signatures [14] prevent hosts from tampering with an agent’s data.

Protecting data includes ensuring secrecy and controlling data access. Much
research in ad hoc networks has specifically addressed securing ad hoc routing
protocols. In addition, approaches like the Secure Message Transmission pro-
tocol [15] focus on protecting individual data transmissions. Even within the
coordination arena, researchers have devised encryption schemes for communi-
cation with coordination spaces. For example, SAMCat [16] and Yalta [17] use
encryption and authentication to securely transmit tuples into and out of a data
space. Our work focuses on the final issue: controlling access to data. A solution
to this problem is complicated by the fact that, in the mobile environment, dis-
connection from a wired infrastructure renders a centralized solution impossible.

256 Christine Julien, Jamie Payton, and Gruia-Catalin Roman

In traditional access control solutions, a single administrator determines what
kind of access can be provided to particular subjects for certain objects. A com-
mon mechanism in wired networks uses access matrices to describe rights. The
rows of the matrix correspond to users and the columns to objects; a cell in the
matrix contains the access rights a user has on an object. This approach general-
izes several approaches, including access control lists and capability definitions.
In the mobile environment, the number of possible agents and the amount of data
available over the lifetime of the system make direct application of these solutions
impractical. The access control function introduced in this paper overcomes the
limitations imposed by mobile systems by operating over general descriptions of
interacting parties and dynamically adjusting to the changing context.

Section 2 introduces a general coordination model for mobile computing.
Section 3 describes our access control mechanism. Details of a particular imple-
mentation of this mechanism appear in Section 4 and applications showing its
use in Section 5. In Section 6, we discuss the construct’s expressive power and
overhead. Section 7 overviews related work, and conclusions appear in Section 8.

2 A Generalized Coordination Model

In this section, we capture the essential features of tuple space coordination
mechanisms in mobile agent systems. This generalization of coordination allows
us to focus our efforts on creating access control that is not tailored for use in a
specific system. The result is a generalization that spans the gamut from tuple
definition to sophisticated tuple space operations.

2.1 Linda Tuple Space Model

Linda enables coordination through the use of a centralized data repository.
Processes insert data by generating tuples in the repository and retrieve data
through content-based operations on the tuple space. In such an operation, the
requesting process specifies a pattern that the retrieved tuple must match. These
operations are synchronous in that they “block” the issuing process until a tuple
satisfies the operation. Adaptations of this model of coordination have proven
useful in mediating interactions among components that require decoupling in
both space and time, a characteristic of highly dynamic or mobile systems.

2.2 Computational Model

We assume a computing model in which devices (or hosts) can move in physical
space and applications are structured as a community of mobile agents that can
migrate among hosts. In our computing model, the agent is the unit of modular-
ity, execution, and mobility, while a host is a container for agents characterized
by, among other things, a location in physical space. We use the term agent to
refer to any stand-alone piece of software code capable of moving between con-
nected hosts. Communication among agents and agent migration can take place
whenever the hosts involved can physically communicate with each other.

Adaptive Access Control in Coordination-Based Mobile Agent Systems 257

2.3 The Tuple Space

Some mobile systems (e.g., MARS [7]) focus on logically mobile agents in a
network of physically stationary hosts, while other systems (e.g., LIME [5] and
EgoSpaces [6]) integrate physical and logical mobility. Each of these systems fa-
cilitates interactions among large numbers of application agents by using a tuple
space that other hosts or agents can access. Tuple spaces can be permanently
bound to hosts, to agents, or distributed among a combination of the two. The
distribution of the tuples is irrelevant with respect to access control; the key
aspect of the representation is how application agents access data. In this paper,
we assume a tuple space bound to each mobile agent. This choice is motivated
simply from a modeling perspective to simplify the discussion of and reasoning
about our access control policies. Using this model, we can simulate other ap-
proaches. For example, to simulate tuple spaces bound to a host, we permanently
associate an agent to each host and use its tuple space as the host’s tuple space.
On the other hand, to simulate access control policies bound to an individual
data item, we can create a new agent for the individual data item. The data
item’s access control is then controlled by the dedicated agent.

The control of each unit (agent, host, or event data item) over its own data
caters to the needs of mobile applications that must often operate autonomously
in order to handle the uncertainty of the environment. Agents or devices may
interact for a period of time, only to be disconnected and never meet again. Such
challenges render any centralized approach to data management infeasible.

2.4 Tuples and Patterns

We generalize a tuple to one in which each field is identified by a name. A
tuple is an unordered set of triples: ((name, type, value),...). For each field,
type is the data type of value. In a tuple, each field name must be unique. Users
access tuple spaces by matching patterns against tuples. A pattern has the form:
{(name, type, constraint), ...). A constraint provides requirements a field’s value
must match for the tuple’s field to match the pattern’s field. Specifically, the
matching function M is defined over a tuple 6 and pattern p as:

M(O,p)=(NVe:ce€p:: (Af: f € 0N f.name = c.name
A f.type instanceof c.type
it c.constraint (f .value))). !

M requires that, for every constraint in the pattern, there is a field in the tuple
with the same name, the same type (or a derived type), and a value that satisfies
the constraint. While the function requires that each constraint is satisfied, it
does not require that every field in the tuple is constrained, i.e., a tuple must
contain all the fields in the pattern but can contain additional fields.

! In the notation (op quantified vars:range:: exp), the variables from quantified vars
take on all values permitted by range. Each instantiation of the variables is sub-
stituted in exp, producing a multiset of values to which op is applied, yielding the
value of the three-part expression. If no instantiation of the variables satisfies range,
the value of the expression is the identity element for op, e.g., true when op is V.

258 Christine Julien, Jamie Payton, and Gruia-Catalin Roman

2.5 Basic Operations

Next, we classify the available operations, regardless of the tuple space structure.
These operations fall into two categories: tuple generation and tuple retrieval.
The former create new data items that agents can share for coordination pur-
poses, while the latter allow agents to access available data items.

Tuple Generation. Agents create tuples using out operations: out(7), t),
where T is a tuple space with a particular name located at a particular agent,
and ¢ is a tuple placed in T'. In EgoSpaces, an out places the tuple in a local
tuple space controlled by the generating agent. In LIME an out can place a tuple
in any tuple space owned by any agent on a connected host. In MARS the tuple
is created in the local host’s tuple space. For the purposes of access control,
understanding tuple generation is important if agents can create tuples in other
agents’ tuple spaces. In these cases, the agent responsible for the target tuple
space often desires the ability to express restrictions on the types of data that
can be inserted or on which other agents can generate that data.

Tuple Retrieval. To read and remove tuples, agents use rd and in oper-
ations respectively, which assume three forms: blocking, atomic probing, and
scattered probing. The blocking form, rd(T', p), returns a tuple matching the
pattern p from the tuple space T'. The tuple space can be either local to the
agent or controlled by another agent. Atomic probing operations, rdp and inp,
guarantee, if a matching tuple exists, it is returned, but they can return e if no
match exists. Like the blocking operations, they are atomic with respect to the
tuple space on which they are issued; in some cases in the mobile environment,
guaranteeing this atomicity can be expensive. Scattered probing operations, rdsp
and insp offer weaker guarantees. While these access operations entail only sin-
gle tuples, many extensions allow simultaneous access to groups of tuples. These
operations come in all three forms described above and are referred to as group
operations, e.g., rdg refers to a blocking operation that returns all matching tu-
ples from the tuple space. Access control for tuple retrieval operations is more
obvious and natural than for the former tuple generation operations. The agent
in control of the data items may desire some data to be read only, visible only
to certain parties, or mutable only under certain conditions.

Different models present tuple space operations to the user in different ways.
In LIME, agents operate over a federation of connected tuple spaces, while in
EgoSpaces, agents operate over projections, called wviews, of all available data.
These complex interactions can be reduced to the operations described above.
We next investigate providing access control mechanisms for systems whose in-
teractions can be expressed using this generalized tuple space model.

3 Access Control Function

Given the coordination model described previously, an agent assumes respon-
sibility for mediating access to its data. The ability to control access in this
manner is fundamental because it allows the access policies to reflect an agent’s
instantaneous needs. This is especially important in the highly dynamic mobile

Adaptive Access Control in Coordination-Based Mobile Agent Systems 259

environment where mobile agents want to constantly adjust their behavior to
adapt to a changing context that can include communicating with unpredictable
parties. To achieve flexible access control in this environment, each agent speci-
fies an individualized access control function.

We allow an agent to restrict which other agents access its data and the man-
ner in which the access occurs. To accomplish the former, a requesting agent must
provide credentials identifying itself. To accomplish the latter, the access con-
trol function accounts for the operation being performed. In the end, each agent
defines a single access control function that takes as parameters a tuple, a set of
credentials identifying the requesting agent, the operation being performed, the
pattern used in the operation, and the owning agent’s profile (defined next). This
function returns a boolean indicating whether the requested access is allowed.

3.1 Profiles

We introduce a profile to maintain properties of each agent, which we represent
as a tuple. Particular applications or coordination systems may require specific
attributes in this profile. In general, we assume a profile contains at least a
unique host id identifying the agent’s host and a unique agent id.

3.2 Parameters

An access control function takes five parameters: the credentials, operation, tu-
ple, pattern, and the owner’s profile. We limit ourselves to these parameters
because they capture the aspects of the coordination model we outlined previ-
ously. One could envision the inclusion of additional parameters that measure
behaviors over the lifetime of the system, e.g., an access decision could be made
based on the history of operations on a particular data item. We choose not to
include those at this time because we feel the required bookkeeping overhead is
not met by a demand from potential applications.

Credentials. Credentials allow an agent to convey information about itself. In
simple cases, they can be a standard set of attributes, e.g., the agent’s id or
a third-party authentication. When an agent has a priori knowledge of the ac-
cess requirements, credentials can be more complicated, e.g., a password. When
constructing credentials, an agent may desire not to give away too much infor-
mation, e.g., if the agent has multiple passwords, it should send only the correct
one. However, this is not required in our access control mechanism because an
agent’s credentials are not directly exposed to other agents. These expressive
credentials are especially beneficial in open and dynamic mobile environments,
where it is often not possible to know a priori which agents can access restricted
information. Instead, agents must prove they have required privileges. Agents
select their credentials from the union of the host profile and the agent pro-
file. The credentials are then presented as a tuple of attributes, which allows
an access control function to use pattern matching to evaluate credentials. The
credentials and their transmission with the operation are assumed to be private.
This security is outside the scope of this paper but could be accomplished using
cryptography schemes already under development.

260 Christine Julien, Jamie Payton, and Gruia-Catalin Roman

Operation. The access control function can also account for the operation re-
quested. Often, some data should be restricted to read-only access, yet current
systems do not inherently allow this restriction. Considering the operation when
determining access allows a dynamic application to permit one set of operations
for some agents, but different operations for others.

Requested Tuple. The access control function can operate over the tuple to be
returned from an operation. Pattern-matching allows this portion of the access
control function to be easily defined while remaining flexible.

Pattern. A powerful component of the access control function is its ability
to account for the pattern used in the content-based operation. The pattern
provides information about an application’s prior knowledge of the data. The
owning agent may allow access only to agents that know the “correct” way to
access the data (e.g., providing a wild card pattern that matches any tuple may
not be acceptable). Some knowledge of the structure of the requested tuple might
indicate that the requesting agent shares common application goals.

Owner’s Profile. The access control function also considers the owner’s current
state. Because the access policy is determined dynamically, access can be granted
based on context information. In some cases, data may never be sent wirelessly
between devices unless they are within a secure physical environment where
eavesdropping is known to be impossible.

3.3 The Access Control Function Defined

Formally, the access control function can be represented as: ACF : T x C' x
O x P x II — {0,1}, where T is the universe of tuples, C' is the universe of
credentials, O is the finite set of operations, P is the universe of patterns, and
IT is the universe of profiles. The access control function (ACF) maps the values
of the parameters to a boolean indicating the access decision. The function can
also be represented as: access = ACF (credentials,, op, tuple, pattern, profile,); r
is the requesting agent and o is the tuple’s owner.

We discuss the expressive power of this construct later. For now we consider
what it cannot easily represent. Access decisions cannot be based on properties
of the requesting agent not included in its credentials. Therefore the requesting
agent must carefully construct the credentials it sends with each request. The
access decision cannot rely on arbitrary environmental properties, e.g., an agent
cannot base a decision on the number of copies of a tuple. The access control
function lends itself well to mobile environments because it allows adaptive poli-
cies. Access decisions are transparent to requesting agents; if access is denied, a
requester does not even know that the matching tuple existed.

4 A Sample Implementation

The access control model is intentionally not presented in the context of any par-
ticular system. Instead, we have argued that it can be integrated with many tuple
space based coordination systems matching the form described in Section 2. As

Adaptive Access Control in Coordination-Based Mobile Agent Systems 261

a demonstration of the feasibility and mechanics of such an integration, we have
added this access control mechanism to a particular coordination middleware,
EgoSpaces. We expect that, while some of the challenges we encountered are
unique, other lessons learned will apply across coordination models.

In this section, we first highlight the novel features of EgoSpaces that make
it amenable to coordination in ad hoc networks. This discussion also provides
the information necessary to understand the integration of our access control
mechanism. We complete this section with a technical description of the imple-
mentation of the access control mechanism within EgoSpaces. The description
of the EgoSpaces model and middleware is intentionally brief. The interested
reader can find a more careful evaluation of the model and its associated re-
search concerns in the literature [6].

4.1 EgoSpaces Overview

EgoSpaces addresses the needs of agents in large-scale heterogeneous environ-
ments. An agent operates over a context that can include, in principle, all data
in an entire ad hoc network. EgoSpaces’ unique model of coordination, however,
structures data in terms of views, or projections of the maximal set of data. Each
agent defines its own views; these individual views abstract the dynamic envi-
ronment by constraining properties of the network, hosts, agents, and data. To
further reduce programming costs, EgoSpaces transparently maintains views;
as hosts and agents move, a view’s content automatically reflects the context
changes without the agent’s explicit intervention.

Practically, an agent defines its view as a set of constraints over the net-
work, hosts, agents, and data. Within EgoSpaces each view is managed by an
EgoManager. Each host is associated with a single EgoManager, and all the agents
residing on a host register with the EgoManager before coordinating with other
agents. When registering, an agent’s local tuple space contents become the re-
sponsibility of the EgoManager, who mediates communication between connected
agents. The application agents implicitly use the EgoManager to define and in-
teract with their views, which can require the EgoManager to interact with other
EgoManagers (and, by association, other agents) on remote hosts. An agent issues
content-based retrieval operations on its views. These operations are actually ser-
viced by the EgoManager with which the agent is registered. The EgoManager
uses the pattern provided to select tuples that match the operation request and
evaluates each tuple individually to determine whether or not the tuple satisfies
the view and is a viable candidate for return to the requesting agent.

4.2 Integrating Access Controls with EgoSpaces

EgoSpaces employs the agent-specified access control function on a per-view
basis. When an agent defines a view, it attaches a set of credentials and a list
of operations it intends to perform on the view. The EgoSpaces middleware can
then use each contributing agent’s access control function to determine which
tuples belong in the view. In the end, the view contains only the tuples that
qualify via their owning agent’s access control function.

262 Christine Julien, Jamie Payton, and Gruia-Catalin Roman

In providing access controls in EgoSpaces, we use credentials and access con-
trol functions along with the content-based retrieval and pattern matching mech-
anism already present in the system. Upon integrating the access control func-
tion, a set of credentials is now included as part of the view definition. These
credentials are simply properties that convey information about the agent. The
agent can alter its credentials at any time. To restrict other agents’ perspectives
according to their respective credentials, each agent also provides a dynamically
modifiable access control function. A requesting agent’s credentials are compared
to the access control function of agents who contribute data to the view to re-
strict the tuples available in the view. With the access control functions in place,
to evaluate a tuple for return to a requested operation an EgoManager extracts
information about the agent (properties of the host the agent resides on, prop-
erties of the agent, and the agent’s access control function) providing the tuple
and compares this information with the constraints defined in the requesting
agent’s view, including the credentials. The latter is the key to the access control
function’s integration into the EgoSpaces middleware. If the tuple satisfies the
view’s constraints and the requesting agent’s credentials satisfy the tuple owner’s
access control function, then the requested operation can be performed.

An important aspect of the integration of the access control mechanism de-
scribed in Section 3 into EgoSpaces revolved around the fact that it relies on the
mechanisms inherent to tuple space based systems. Tuples are used to describe
credentials, and access control functions can be described by a set of access poli-
cies defined as patterns, or templates, over tuples. Implementing credentials and
access control functions in this way provides a number of benefits. First, the
pattern matching mechanisms already provided by the tuple space system can
be used to check the credentials against an access control function. Second, we
allow the programmer to construct credentials and access control functions in a
way that he is already familiar with. Third, using tuples and templates allows
for flexibility and adaptation, since adding and removing fields from tuples and
patterns is relatively simple. Finally, the use of tuples and patterns allows for
expressive access control functions and credentials since access control may be
expressed according to any property of the interacting agents.

The EgoSpaces system requires certain assumptions about its operating en-
vironment to provide atomic consistency guarantees regarding the performance
of its operations on views. More details on these assumptions and dealing with
environments where they do not hold can be found in [6]. Because the added
access control provisions involve only local decisions at each contributing host,
they have no negative impact on view consistency.

5 Programming with Access Control Mechanisms

In this section we demonstrate the use of access controls within the framework of
the EgoSpaces coordination system. We first describe the programming interface
for using the access control function within EgoSpaces. We then describe two
specific applications that use the described interfaces. We selected examples

Adaptive Access Control in Coordination-Based Mobile Agent Systems 263

that apply in differing application domains to give a sense of the access control
mechanism’s flexibility. We do not give extensive details of the coordination
mechanics specific to the EgoSpaces middleware but instead focus on the access
control aspects of the two applications.

5.1 The Access Control API

Figure 1 shows the public API for defining and using credentials. As discussed
in the previous section, an agent defines credentials that it sends with its view
definition in EgoSpaces (or simple operations in other coordination systems) to
identify itself to the other party. The first method in the Credentials interface,
selectProperty, allows the agent to select a property from either the agent’s
own profile or its host profile to include in the credentials. The second method,
dropProperty, allows an agent to remove a property from its credentials.

selectProperty(String profileType, String propertyName)
— select a property (identified by the propertyName) from either the host or
agent profile (identified by profileType) to include in the credentials
dropProperty(String propertyName)
— drop the property identified by propertyName from the credentials

Fig. 1. The Credentials API Within the EgoSpaces Middleware.

addConstraint(String property)
— add a constraint that requires the existence of field with the given name
addConstraint(String property, String function, Serializable value)
— add a constraint that requires the named field to satisfy the given function
and value
addConstraint(String property, ConstraintFunction cf)
— add a constraint that requires the named field to satisfy the given
application-defined constraint function
addPermittedOperation(String operation)
— add the specified operation or operations to the list of those allowed
matches(Credentials)
— determines whether the provided credentials match this policy

Fig. 2. The AccessControlPolicy API Within the EgoSpaces Middleware.

An agent who provides data defines an access control function to protect
itself and its data. Fach access control function is composed of one or more
access control policies. The API for this component appears in Figure 2. The
API contains three mechanisms to add a constraint to the access control policy.
The first allows an agent to add a constraint that requires the credentials to
contain a field with a certain name but no specific value. The second mechanism
allows the agent to add a constraint that uses a built-in function (e.g., “=") to
constrain the value of a named property in the credentials. The third and final

264 Christine Julien, Jamie Payton, and Gruia-Catalin Roman

mechanism allows the application agent to define a tailored constraint function
that restricts the value of the named property in the credentials. This API also
shows the method an agent uses to restrict the operations that can be performed
on the coordination space. The final method evaluates the provided credentials
to determine whether they match the constraints of this policy.

We provide the access control function as a disjunction of access control
policies to allow more expressive functions. We require the combination of the
credentials and the specific operation to satisfy at least one of the policies within
the access control function. Figure 3 shows how agents assemble access control
policies into a single access control function through an add method and a re-
move method. The matches method determines whether the credentials and
the operation satisfy at least one of the access control policies.

addPolicy (AccessControlPolicy acp)
— add the specified policy to the agent’s access control function
removePolicy (AccessControlPolicy acp)
— remove the specified policy from the agent’s access control function
matches(Credentials cred)
— determines whether or not the provided credentials match the policies
contained within this access control function

Fig. 3. The AccessControlFunction API Within the EgoSpaces Middleware.

5.2 A Music Sharing Application

A music sharing application for mobile users implemented on top of EgoSpaces
serves as one vehicle for testing the access control implementation. The appli-
cation provides users with access to a music service with sharing, search, and
down-load capabilities. To determine what music a user sees, the user provides
properties that define the music sharing application’s view. This includes a net-
work constraint that includes only data residing on hosts within a certain num-
ber of network hops, a host constraint that requires the data to reside on hosts
which are traveling in the same direction as the user, and a data constraint that
restricts the returned items according to a file size limit. A screen shot of the
resulting application is shown in Figure 4.

The data is also restricted according to the credentials provided by the agent,
which includes a unique agent id and a known phrase encrypted with a shared
password provided in the user’s official registration from the music service. This
password encrypted phrase authenticates the user as a subscriber. This phrase
is provided as a product key when the user retrieves (purchases) the applica-
tion from a reputable source (vendor). Since users share music only with others
subscribed to the service, the agent also provides an access control policy which
specifies that a requesting agent must have an agent id and must have the correct
phrase encrypted with the subscription password. Successful decryption of the
phrase by the receiving agent implies that the requesting agent holds the correct
password. The code to define the credentials within the application is:

Adaptive Access Control in Coordination-Based Mobile Agent Systems 265

EgoSpaces Subscription Music Service

Options

Search Crileria—

Title Artist Album

Story of the Year

Search) { Clear

| thobi o efehat i
[nformarion 1' Library ’eSeammResults -l Downloads 1
| Song Information
| Filename Size
|Filename: Baby_Blue.mp3 3472
| Until_The_Day_I|_Die.mp3 Best_Of_Me.mp3 4081
| Title: Until_The_Day_I_Die.mp3 3682
| Until The Day | Die And_The_Hero_Will_Drown.... 3032
EAmst: Harder_to_Breathe.mp3 2712
| Story of the Year Promise.mp3 4181
| Album: Search Settings 3406

Page Avenue TS -
Size: pecify View
| 3682 = =TT .
|Length: Limit file size to: __| Limit hosts in context to those
=355 | Unlimited ;] moving in the same direction
Restrict the physical size of the context (hop count)
1 @
: 1 1 | | 1 1
5 | o 2 4 6 8 10
P
| { oK Cancel

Download
) b dhthuhatad

Fig. 4. The subscription music service.

Credentials ¢ = new Credentials();
c.selectProperty (AGENTPROFILE, ¢‘Passphrase’’);

First, the agent creates a credentials object. It then selects the passphrase prop-

erty from the agent’s profile that was handed out when the code was installed.
To build the access control policy, the agent defines the policy and adds it
to the access control function:

AccessControlPolicy policy = new AccessControlPolicy();
policy.addConstraint (¢ ‘Passphrase’’, ‘‘=’’, encryptedPhrase);
policy.addPermittedOperation(Operations.ALLRDS) ;
acf.addPolicy(policy);

In this code, the agent first creates a new policy. It then adds the single constraint
that requires the passphrase to be equivalent to this agent’s known encrypted
phrase. It then adds to the permitted operations all read operations, preventing
any admitted agents from removing any of the agent’s own music files. Finally,
the agent adds the defined policy to the access control function.

This music sharing application requires an initialization which can be ar-
guably termed centralized. As indicated above, it can be equated with receiving
the software with a subscription, from a reputable source which provides the

266 Christine Julien, Jamie Payton, and Gruia-Catalin Roman

appropriate product key. After installing the music sharing software, users share
music in a completely decentralized fashion, making autonomous decisions with
no reliance on the availability of a centralized authority.

5.3 Administrative Domains

Many applications restrict agent operations to administrative domains. Assume
nested domains defined as a university, a department, and a research group.
To provide security guarantees, applications limit access to certain data to only
computers on the university’s network. Still other data ought to be restricted to
departmental computers or to research group computers. A user in the research
group, working on a mobile computer, wants to use a software license of which
the research group has n copies. The licenses are stored as tuples in a tuple
space. Each computer in the group carries a tuple space; the available licenses
are initially distributed in some random fashion. A user can take a license if it is
not in use and the user holding the license is within communication range. The
agents controlling the licenses restrict access to only group members who have
departmental authentication (retrieved a priori), and are running on computers
in the university domain. To retrieve a license, a user provides these three prop-
erties as credentials and attempts to perform an in operation for a license from
a connected tuple space. If successful, the number of available licenses decreases
by one. When the user finishes using the software, the agent replaces the license
in its local tuple space.

To define the credentials in this application, an agent requesting a license
uses the following code:

Credentials ¢ = new Credentials();
c.selectProperty (HOSTPROFILE, ¢ ‘University’’);
c.selectProperty (HOSTPROFILE, ¢ ‘Department’’);
c.selectProperty (HOSTPROFILE, ‘‘Group’’);

The agent creates an empty credentials object and then selects three properties
from the host’s profile to add to the credentials: the university, the department,
and the group. These three characteristics will be used to determine whether the
agent has the right to access the license it requests.

Agents responsible for the licenses protect them by using access control func-
tions that restrict access based on the administrative domains outlined above.
This access control function is defined using the following code:

AccessControlPolicy policy = new AccessControlPolicy();

policy.addConstraint (¢ ‘University’’, ‘‘=’’, ¢‘WUSTL’’)
.addConstraint (¢ ‘Department’’, ‘‘=’’, ¢‘CSE’’)
.addConstraint (‘ ‘Group’’, “‘=’’, ‘‘mobi’’);

policy.addPermittedOperation(Operation.SINGLES) ;
acf.addPolicy(policy);

After creating a new policy, the agent adds three constraints to it that restrict
the university, department, and group to the correct set of users. The agent
permits all single operations (that interact with only a single license at a time).
Finally, the policy is added to the access control function.

Adaptive Access Control in Coordination-Based Mobile Agent Systems 267

As these two examples demonstrate, the developer burden for adding access
control to the application is minimized and builds on the notion of tuples and
tuple spaces to ease the learning curve for the application programmer.

6 Discussion

The access control function provides a flexible mechanism for specification of
dynamic and adaptive privileges in mobile systems. Next, we take a deeper look
at two aspects of the access control function: expressiveness and overhead.

6.1 Expressiveness

While its expressiveness makes the access control function flexible and useful in
coordination among constantly changing mobile agents, this flexibility comes at
some cost. On one hand, because credentials can encode arbitrary information
about an agent, particular applications can adapt credentials to their needs. In
addition, because the access control function takes a number of parameters, an
agent can dynamically adjust its policies. However, while complex policies are
possible, constructing the function (from the developer’s perspective) can be-
come difficult as policies become more complex. Fortunately, because the design
employs the use of pattern matching, much of this complexity can be hidden by
the infrastructure.

6.2 Overhead

The addition of the access control mechanism introduces some amount of pro-
gramming overhead, but this overhead is difficult to quantify without a case
study involving users implementing actual access control policies. While this is
a useful future task, it is outside the scope of this paper. Instead we focus on
the overhead due to the additional communication and computation needed to
provide the access control function described previously.

Additional Communication. The key aspect of the communication overhead
is the amount of data (in bits) that must be sent. Before adding the access
control mechanism, the number of bits required to send an operation request is:
b = |op| + |pattern| + |agent id,|, where |op| is the number of bits required to
identify the operation; |pattern| is the number of bits required to represent the
pattern, which depends on the number of fields in the pattern; |agent id| is the
number of bits required to identify the requesting agent so the response can be
returned. It is likely that the pattern, which encodes the content-based nature of
the request, dominates this expression, as the op and agent id, are simple data
types with small, constant lengths.

We can write a similar term to express the number of bits needed to be sent
when using the access control function. This includes only the addition of the

268 Christine Julien, Jamie Payton, and Gruia-Catalin Roman

number of bits necessary to encode the credentials: be.r = |op| + |pattern| +
lagent id,.| + |credentials,.|.

Credentials are a tuple. Because tuples are similar to patterns, the number of
bits required to represent the credentials is likely near the number of bits needed
to represent a pattern. If so, the overhead of using access control is approximately
2. An application can directly control the amount of overhead it incurs because
it determines what credentials to send with each request. In this respect, the use
of application intuition to reduce the credentials transmitted to exactly those
required reduces the communication overhead.

Additional Computation. Because the function can contain arbitrary code, its
computational overhead lies in the hands of the application programmer. From
the programmer’s perspective, the operating conditions of the application must
be a primary concern. If so desired, a system can include a mechanism to prevent
undesirable access control functions by bounding the time they are allowed to
run or by imposing restrictions on their capabilities. In most cases, however, the
additional computation required is minimal since the access function may be
limited to a pattern matching function.

7 Related Work

As discussed previously, the use of an access matrix does not directly lend itself to
mobile systems. In one example of attempting to apply such a method, TUCSON
agents [18] are assigned capabilities defining tuple space operations for particular
patterns in a certain tuple space. An access control list for the tuple space stores
these capabilities. This approach requires that all coordinating parties are known
in advance and that a centralized party can determine access policies statically.

Other systems use encryption for access control. In SecOS [19],, tuples are
unordered sequences of individually encrypted fields, and, to match an encrypted
field, a pattern must contain a correct key. Other work [20] associates keys with
tuple spaces, and an agent must provide the key to access the tuple space. While
both of these models provide access control mechanisms, they require secure key
distribution and management, which affects the scalability of the system.

Law Governed Interaction (LGI) [21] provides an expressive approach to ac-
cess control in which agents must adhere to a law that imposes context-sensitive
constraints on the execution of tuple space operations. A law dictates actions an
agent performs in response to tuple space operations. Programming applications
in LGI requires programming specific actions in the access control policy and
adding a controller to mediate tuple space requests. In contrast, in our model,
programming takes place in the coordination model, and the agent’s requested
operation is checked with the access control function. One aspect of LGI that
separates it from the access control mechanism described in this paper is that it
allows access rules to be imposed from outside the individual agents. We do not
consider such cases in our work because it departs from our view that agents
should be as autonomous as possible.

Adaptive Access Control in Coordination-Based Mobile Agent Systems 269

The Smart Messages system [22] structures a mobile computing system in
much the same way as discussed in this paper. Using Smart Messages, however,
the coordination in the system occurs through the logical migration of Smart
Messages. In this system, access control takes the form of admission control
in determining when to allow migrating Smart Messages to execute on a new
host. The admission managers responsible for this task use information about
the resource needs of an arriving Smart Message as they relate to the available
resources on the node. The access control mechanism described in this paper can
account for more varied information than resource availability by using creden-
tials describing the application agent and using the data items themselves when
making access decisions.

Work targeted directly to ad hoc networks [23] begins to address the need
for credential verification among interacting parties using X.509 certificates. This
work focuses on adapting the chain of verification for certificates to function in
an ad hoc network by using assertions generated by peers in the ad hoc network.
The disadvantage of applying this type of solution in the environments we have
described is that it requires some a priori knowledge shared among the peers
in the ad hoc network in order to be able to verify the credentials of other
participants. Key pre-distribution schemes targeted to sensor networks [24] have
worked without a centralized server to establish pairwise secure communications.
These approaches generally focus on maximizing the total security of the system
to successfully handle more “compromised” nodes. These schemes focus simply
on providing the ability to encrypt data and do not address the need to restrict
access to certain data items based on contextual properties.

Additional work on authentication protocols in ad hoc networks [25, 26] fo-
cuses on securing communications among parties in ad hoc networks. These
protocols tend to attempt to validate the identity of a communicating party.
Our work instead focuses on the data sharing aspects and assumes that agents
do not necessarily care about the exact identity of a coordinating partner, but
about properties of the partner. This style of access control is more in line with
our target environment since we assume that an application does not have a
priori knowledge of the other agents or data it will interact with. The flexible
nature of the access control mechanism described in this paper allows agents to
base access decisions on abstract properties and the content of data, enabling
more expressive access rules.

8 Conclusion

In today’s emerging mobile systems, applications find themselves structured as
networks of mobile agents that must interact to achieve the users’ goals. As mo-
bile devices become increasingly prevalent and more users join mobile networks,
the complexity of mediating interactions among agents multiplies. A significant
roadblock to the widespread deployment of many mobile applications lies in
the inability to secure interactions in this open environment where encounters
with others are necessarily opportunistic and unpredictable. The work presented

270 Christine Julien, Jamie Payton, and Gruia-Catalin Roman

in this paper examined one aspect of this need by introducing a mechanism
for agents to control access to data. This mechanism, in the form of an agent-
tunable function, allows autonomously operating agents to share data with other
connected agents, given some restrictions. Each agent makes individual access
decisions for the data item it “owns” based on numerous properties including
properties of the environment, of the agent’s state, of the requesting agent, and
even properties of the data item itself. By placing control in the hands of indi-
vidual agents, we have eliminated the need for a centralized authority to make
access decisions and thus created an access mechanism that functions in ad hoc
networks where the coordinating parties are not known in advance. Because each
access control decision is independent and made in a decentralized manner, the
access control function naturally scales to networks of high numbers of mobile
agents. Because we started with a foundational model of coordination, the re-
sulting mechanism addresses the access control needs within mobile coordination
models. In particular, the construct provides increased scalability and decoupling
when compared with previous constructs without sacrificing flexibility and ex-
pressiveness.

Acknowledgements

This research was supported in part by the Office of Naval Research under
ONR MURI research contract N00014-02-1-0715. Any opinions, findings, and
conclusions or recommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the Office of Naval Research.

References

1. Gelernter, D.: Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems 7 (1985) 80-112

2. Kaufman, J., Lehman, T.: OptimalGrid: The almaden SmartGrid project: Au-
tonomous optimization of distributed computing on the grid. IEEE Task Force on
Cluster Computing 4 (2003)

3. Wyckoff, P., McLaughry, S., Lehman, T., Ford, D.: TSpaces. IBM Systems Journal
37 (1998)

4. Freeman, E., Hupfer, S., Arnold, K.: JavaSpaces Principles, Patterns, and Practice.
Addison-Wesley (1999)

5. Murphy, A.L., Picco, G.P., Roman, G.C.: LIME: A middleware for physical and log-
ical mobility. In: Proceedings of the 21°* International Conference on Distributed
Computing Systems. (2001) 524-533

6. Julien, C., Roman, G.C.: Egocentric context-aware programming in ad hoc mo-
bile environments. In: Proceedings of the 10" International Symposium on the
Foundations of Software Engineering. (2002)

7. Cabri, G., Leonardi, L., Zambonelli, F.: MARS: A programmable coordination
architecture for mobile agents. Internet Computing 4 (2000) 26-35

8. Moore, J.: Mobile code security techniques. Technical Report MIS-CIS-98-28,
University of Pennsylvania (1998)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Adaptive Access Control in Coordination-Based Mobile Agent Systems 271

White, J.: Telescript technology: The foundation for the electronic marketplace.
General Magic White Paper, General Magic, Inc. (1994)

Gray, R., Kotz, D., Cybenko, G., Rus, D.: D’Agents: Security in a multiple-
language, mobile-agent system. In Vigna, G., ed.: Mobile Agents and Security.
Volume 1419 of LNCS. Springer-Verlag (1998) 154-187

Gray, R.: Agent tcl: A flexible and secure mobile-agent system. In: Proceedings of
the 4" Annual Tcl/Tk Workshop. (1996)

Necula, G.: Proof-carrying code. In: Proceedings of the Symposium on Principles
of Programming Languages. (1997)

Sander, T., Tschudin, C.: Protecting mobile agents against malicious hosts. In
Vigna, G., ed.: Mobile Agents and Security. Volume 1419 of Lecture Notes in
Computer Science. Springer-Verlag (1998) 44-60

Borselius, N., Mitchell, C.J., Wilson, A.: Undetachable threshold signatures. In:
Cryptography and Coding—Proceedings of the 8" IMA International Conferemce.
Volume 2360 of LNCS. (2001) 239-244

Papadimitratos, P., Haas, Z.: Secure data transmission in mobile ad hoc networks.
In: Proceedings of the 2003 ACM Workshop on Wireless Security. (2003) 41-50
National Center for Supercomputing Applications, Integrated Decision Technolo-
gies Group: SAMCat: A securable active metadata catalogue. (2002)

Byrd, G., Gong, F., Sargor, C., Smith, T.: Yalta: A secure collaborative space for
dynamic coalitions. In: IEEE 2"¢ SMC Information Assurance Workshop. (2001)
Cremonini, M., Omicini, A., Zambonelli, F.: Coordination and access control in
open distributed agent systems: the TuCSoN approach. In Porto, A., Roman, G.C.,
eds.: Coordination Languages and Models. Volume 1906 of LNCS., Springer-Verlag
(2000) 99-114

Bryce, C., Oriol, M., Vitek, J.: A coordination model for agents based on secure
spaces. In Ciancarini, P., Wolf, A., eds.: Proceedings of the 3"¢ International
Conference on Coordination Models and Languages, Springer-Verlag (1999) 4-20
Handorean, R., Roman, G.C.: Secure servise provision in ad hoc networks. In:
Proceedings of the 1% International Conference on Service Oriented Computing.
(2003)

Minsky, N., Minsky, Y., Ungureanu, V.. Safe tuplespace-based coordination in
multi agent systems. Journal of Applied Artificial Intelligence 15 (2001)

Kang, P., Borcea, C., Xu, G., Saxena, A., Kremer, U., Iftode, L.: Smart messages: A
distributed computing platform for networks of embedded systems. The Computer
Journal Special Issue on Mobile and Pervasive Computing ((to appear))

Keoh, S.L., Lupu, E.: Towards flexible credential verification in mobile ad hoc net-
works. In: Proceedings of the ACM Workshop on Principles of Mobile Computing.
(2002) 58-65

Du, W., Deng, J., Han, Y.S., Varshney, P.K.: A pairwise key pre-distribution
scheme for wireless sensor networks. In: Proceedings of the 10" ACM Conference
on Computer and Communication Security. (2003) 42-51

Weimerskirch, A., Thonet, G.: A distributed light-weight authentication model for
ad hoc networks. In: Proceedings of the 4" International Conference on Informa-
tion Security and Cryptology. (2001) 341-354

Balfanz, D., Smetters, D.K., Stewart, P., Wong, H.C.: Talking to strangers: Au-
thentication in ad hoc wireless networks. In: Network and Distributed System
Security Symposium. (2002)

Separation of Concerns for Mechatronic Multi-agent
Systems Through Dynamic Communities*

Florian Klein** and Holger Giese

Software Engineering Group, University of Paderborn,
Warburger Str. 100, D-33098 Paderborn, Germany
{fklein, hg}le@upb.de

Abstract. Multi-agent systems present a promising paradigm for coping with the
complexity of intelligent mechatronic applications, particularly where purposeful
behavior and complex structures emerge from the interactions of seemingly sim-
ple elements. The safety of mechatronic systems relies on predictability, which is
apparently at odds with the concept of emergent behavior. When designing com-
plex mechatronic multi-agent systems, the main challenge thus lies in achieving
predictability without ruling out the desired emergent behavior. We propose to
achieve this by decomposing the requirements and design into largely indepen-
dent concerns, represented by social structures with behavioral norms, which are
reconciled at the agent level. An explicit grounding of all constructs in observable
entities from the mechatronic system’s environment model makes them amenable
to formal analysis and enables rapid prototyping.

1 Introduction

The field of mechatronics [1] combines mechanical, control, electrical, and software
engineering. Its aim is to improve the performance of mechanical systems by embed-
ding them with intelligent electronic controllers that analyze and exchange information
and adapt and coordinate behavior. Due to their relative autonomy, these controllers are
typically interpreted as agents. Applying the multi-agent system paradigm to describe
their interactions allows the mechatronics community to build on a wealth of experience
concerning the design of distributed information systems.

The RailCab project! is a prominent effort to develop such a mechatronic multi-
agent system. Fleets of intelligent shuttles, capable of transporting a small number of
passengers or a cargo container, autonomously navigate a passive track system and
make independent and decentralized operational decisions. The underlying vision is to
combine flexible, on-demand scheduling with extreme cost and resource effectiveness,
thus combining the specific advantages of individual and public transportation. Even
though shuttles compete by bidding on transportation tasks, they may collaborate in

* This work was developed in the course of the Special Research Initiative 614 - Self-optimizing
Concepts and Structures in Mechanical Engineering - University of Paderborn, and was pub-
lished on its behalf and funded by the Deutsche Forschungsgemeinschaft.

** Supported by the International Graduate School of Dynamic Intelligent Systems.

! http://www-nbp.upb.de/en

R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 272-289, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Separation of Concerns for Mechatronic Multi-agent Systems 273

energy-efficient ad-hoc convoys. Their most advanced aspect is their ability to reeval-
uate their goals using a novel process termed self-optimization, which allows them to
evolve their strategies and behaviors in response to their environment.

From the software engineering point of view, the key challenge is constraining this
process to safe behaviors. Mechatronic systems are normally safety-critical, as failures
in the control software affect a mechanical system that might potentially harm peo-
ple or the environment. The classical approach to mechatronic system design therefore
strictly relies on analytic predictions of a system’s properties in order to guarantee that
a design meets a set of carefully elaborated safety requirements. Now, self-optimization
necessarily introduces a certain amount of unpredictability into the system.

Networking self-optimizing systems multiplies this effect. Unfortunately, many
mechatronic solutions specifically derive their power from the cooperation between
agents. A particularly fascinating effect in this respect is the emergence of complex
behaviors or structures from simple, local interactions.

This is the focus of the subfield of swarm intelligence [2]: How can a set of simple
rules makes a multitude of individual agents behave in a coordinated fashion? When
designing such systems, the main challenge lies in managing the inherent combina-
torial complexity and handling the way individual agents mutually affect each other.
Successful agent-based solutions are often inspired by analogies to natural or social
phenomena, not least because developers find such metaphors a useful or even essen-
tial tool for understanding complex systems. Designing or even understanding dynamic
multi-agent systems is usually not possible in a purely analytical fashion.

While such inaccessibility to analysis and a safety-critical system’s need for analytic
predictions seem to be diametrically opposed, we hope to be able to reconcile both ap-
proaches. In order to enable the use of self-optimization and emergence in mechatronic
systems, we propose to separate different system concerns at the multi-agent system
level by assigning them to specific agent communities. Conflicts between the prescrip-
tions of different communities are then resolved locally in each agent. The system de-
signer maps each requirement to a particular system concern, which specifically allows
the extraction of safety-related requirements. As each concern can, to some extent, be
studied in isolation, this results in a reduced complexity of the overall design. Possible
conflicts at the intersection points between concerns can be systematically identified
and resolved using a combination of formal methods and experimental validation.

Both techniques are enabled by the principle of explicit grounding: All abstract
concepts such as communities or promises need to be expressed in terms of observable
entities from the mechatronic system’s environment model. This provides a shared vo-
cabulary for the formal specification of the concerns’ required properties and a common
base for merging different concerns, which is necessary for conducting a formal analy-
sis of their composition. It equally provides operational semantics for the abstract con-
cepts, which facilitates the execution and thus early testing of models. Appropriate tool
support would allow a prototyping approach with rapid cycles of experimental evalua-
tion and subsequent refinement of the design specification. However, explicit grounding
restricts the types of agent behavior we can express to an executable subset of standard
software engineering concepts, which in turn limits our ability to model sophisticated
cognitive capabilities.

274 Florian Klein and Holger Giese

LAY Symbols
o Py
Q >0 £ Shuttle (White Team)
QA o) B> Shuttle (Black Team)
L A\ 4 A @ Wireless Base Station

O Task Object

Fig. 1. Elements of the physical model.

Our approach is nonetheless sufficient for reasoning about the reactive and proactive
behaviors of mechatronic agents and their motivations. We illustrate this with the help
of an example inspired by the RailCab project, which we are going to use throughout
this paper.

In the following section, we introduce the physical domain model. It serves as the
basis for the conceptual models in Section 3. Different concerns of the system are de-
fined by modeling and decomposing the requirements (Section 3.1), and assigned to
specific responsible communities that are fleshed out in some detail (Section 3.2). In
Section 4, the composition of the concerns is discussed, dealing with local conflicts
(4.1) and conflicting commitments (4.2). The resulting specification is then used for
rapid prototyping and exploration in Section 5. We first discuss its operationalization
(Section 5.1) and then execute it to identify and resolve undesired emergent behaviors
(Section 5.2). We conclude with a short summary and an outline of our future plans.

2 Physical Domain Model

As it is directed at enabling the exploration of ideas and strategies through rapid pro-
totyping [3], our treatment of agent-related high-level concepts closely builds on estab-
lished software engineering practices. The physical domain model, which is basically
the system’s fundamental ontology expressed as a UML class diagram, describes the
concrete entities that are present in the system, i.e. consists of the agents themselves
and a model of the perceivable environment as it presents itself to their sensors. It serves
as an explicit conceptual and technical grounding for all the more abstract concepts we
subsequently introduce. In this way, we hope to benefit from both the power and expres-
siveness of abstract reasoning and the pragmatic elegance of non-symbolic intelligence
and physical grounding [4].

As we are discussing mechatronic systems, physical reality offers itself as the ev-
ident choice as the object of a - literally - physical domain model. Specifying such
a model already is a common design activity, as control software is usually designed
and tested within a simulated environment that faithfully models the actual sensor in-
put used in later development phases and the production system. As the elements of the
model refer to physical objects and their perceivable attributes, their semantics are quite
straightforward and intuitive.

In order to focus on the exploration of our methodological ideas, we used a simpli-
fied domain model based on the RailCab application as a test case for the application
of the approach we present in this paper. As structuring the coordination and control
problems inherent in the application by means of separate concerns is the focus of our

Separation of Concerns for Mechatronic Multi-agent Systems 275

Kernel Entity Message
. " 1 n . e or 1 n - =
-time : Time kel entity -|den_t_|f|er.5tr|ng Dlackboard post - timeStamp ; Time
- position : Vector
- radius ; Integer

+ post{Message}
+ messages() : List

1

Shuttle BaseStation Task
- velocity : Vectar -range : int - containers ; int
-energy : int - transfer(Shutle, int)
- mave() - load(Shuttle}
- unload(Shuttle)

Fig. 2. The physical domain model.

approach, we kept the envisioned coordination architecture largely intact, but allow the
shuttles to move freely across a plane (see Figure 1). The use of tracks would make
distances between shuttles depend on their current tracks (discrete) and their relative
positions on those tracks (continuous), which would needlessly encumber several dia-
grams with case differentiations without adding anything on the conceptual level.

In our example, the physical model mainly consists of physical entities, i.e. the shut-
tles, transportation tasks manifested as stacks of containers, and wireless base stations.
A kernel provides a simulated plane and a discrete system-wide clock. Each entity may
receive and publish messages, providing a simple blackboard-type messaging service.?
Entities have an identifier and positions, shuttles have a velocity and an energy level,
tasks have a certain number of containers left, and base stations have a maximum trans-
mission range (see Figure 2).

This static model may now be augmented by a specification of its basic dynam-
ics. This physical process model is once again restricted to the immediate semantics
of observable ’physical’ actions. Obviously, this rules out the description of more com-
plex behaviors, cognitive processes and deliberated interactions. The model is, however,
quite sufficient to describe the effectors that agents use for the manipulation of their en-
vironment. It thus provides a purely *phenomenological’ description of the behaviors
exhibited by the system, which is all that is required at this point.

As a formalism to describe these processes, we use story patterns [5], which will
keep playing a prominent role throughout the whole development process. Story pat-
terns are an extended type of UML collaboration diagram based on the theory of graph
grammars [6]. Their appeal is in their ability to formally express both constraints in
the vein of the UML’s Object Constraint Language (OCL) and behaviors, described as
the transition between two instance situations serving as pre- and postconditions, with
one straightforward graphical notation. Figure 3 shows two simple examples. Patterns
may impose constraints both on structure (one kernel, one shuttle) and attributes (pay-

% Though we abstract from the messaging infrastructure, neither our approach nor the appli-
cation example are principally limited to centralized messaging. A distributed, decentralized
solution is entirely feasible, but would introduce replication issues that would distract from the
paper’s focus.

276 Florian Klein and Holger Giese

k: Kemel s1: Shuttle U Task <<create>> 1. Shul
kernel shuttle; . _ 3 payload transport _
- time := time+1 - position := position + velocity = ORI S EiEEs = el Sl
- energy := energy - [velocity|? - velocity = (0.0}
T {t1 i >0} {distance(s1.position, t1.position) < s1.radius}
(a) Movement of the shuttles (b) Loading a container into a shuttle

Fig. 3. Definition of basic dynamics.

load=null). If these constraints are successfully matched against the instance graph at
run-time, the pattern is executed and may change the graph structure (create or delete
objects and associations), modify attributes (time:=time+1) or trigger methods invoca-
tions.

Figure 3(a) shows the process for shuttle movement. When moving, shuttles expend
energy at a rate proportional to the square of their speed, [velocity|?. Shuttles may form
and dissolve energy-efficient convoys, which affects the rate. For tasks, we define the
following processes: creation, loading containers into and unloading them from shuttles,
paying shuttles by transferring energy, and termination. Figure 3(b) displays the story
pattern for loading a container. Furthermore, all agents publish messages. Even though
the scope of possible actions may seem extremely limited at this level, it serves as the
setting of rich and complex interactions taking place at a higher level of abstraction,
including negotiations and cooperative problem solving.

3 Conceptual Model

These higher levels of abstraction can now be described by building on the semantics of
the physical domain model. Increasingly complex definitions may be used as building
blocks in further definitions describing goals, interaction protocols or basic delibera-
tions. In our simplified example, this is a relatively direct process leading straight from
the physical model via requirements to structures and behaviors. For more complex
systems, a more intricate iterative process going back and forth between the different
concerns of the model is usually necessary.

3.1 Requirements

The physical domain model now provides us with a basic vocabulary to state require-
ments. For the needs of our example application, the ability to describe hard’ goals that
can be precisely defined in terms of the physical model is sufficient. They can easily be
expressed using story patterns. The primary goal of the shuttle agents is to maximize
their energy level, which can be decomposed into maximizing the number of tasks com-
pleted and minimizing the energy consumption. Tasks strive to reach their destination
both as quickly and as cheaply as possible. These subgoals are contrary to each other
and therefore need to be adequately balanced. A secondary but nonetheless very impor-
tant concern is safety: a collision between two shuttles needs to be avoided at all cost.
The hazard and an actual accident are formalized by Figures 4(a) and 4(b).

Due to interdependencies, the progression from the physical model to the require-
ments will usually not be as strictly sequential as it is presented here: requirements may
motivate the introduction of new entities and possible actions, which may in turn lead

Separation of Concerns for Mechatronic Multi-agent Systems 277

[s2:Shutte | [si:Shuttl

Idistanceds® position, s2 position) = fau (81, [velocity| + sZ. velocity|} {distance(s 1 posilion, 52 posilion) = 51 radius + 52 radios}

(a) Hazardous situation (b) Accident

Fig. 4. Collision between two shuttles.

to additional requirements. This can be seen even in this simple example: The ability to
form convoys, itself clearly motivated by the goal of minimizing the energy consump-
tion, entails the introduction of new subgoals and rules governing convoys.

When attempting to build verifiably safe multi-agent systems, reconciling a set of
possibly conflicting requirements is a central conceptual problem. Especially large-
scale multi-agent systems can quickly lead to intractably complex designs with a
quickly exploding number of possible states. Considering the usually limited resources
of embedded processors, computation may also pose problem at runtime.

We aim to reduce the complexity of the requirements by decomposing them into
largely independent concerns along different, ideally orthogonal, axes. Hierarchical,
spatial or temporal separation criteria are most commonly used. Each of the result-
ing subsets is then assigned to the concerned group of agents, who form a community
charged with its implementation. If we can minimize the dependencies between differ-
ent communities, it becomes much easier to prove that the behaviors they stipulate are
indeed compatible and composable in a safe manner. This will then allow agents a cer-
tain freedom to dynamically join and leave communities, as long as they stay within the
bounds established by the formal analysis. A clean separation between safety-critical
and efficiency-related concerns further allows the use of the appropriate design and
verification tools and methodologies for each problem.

In the example, there are communities responsible for the publication and for the
auctioning and execution of tasks. The safety concerns are addressed by smaller, phys-
ically localized communities that form around the wireless base stations. Finally, the
shuttles team up in virtual companies that coordinate the members’ distribution and
bidding strategies in order to maximize their profits. Shuttles working for the same
company may spontaneously form convoys, which are organized as temporary ad-hoc
communities.

3.2 Communities and Cultures

Communities and Cultures are the cornerstones of our approach’s conceptual model.
They structure and connect many other high level constructs of the model. Cultures are
abstract sets of norms, which include concepts as diverse as roles and behaviors, mes-
sage formats and social conventions concerning the interpretation of behavior. Commu-
nities are concrete groups of agents that implement a particular culture.

A community may either exist as an object in its own right, like a company or a mail-
ing list, or just implicitly defined by its members, like a convoy or the community of
all shuttles near a particular base station. Likewise, membership in a community may
be established explicitly through some attribute or relationship or implicitly through
performing a specified behavior. Either way, membership in a community is a directly
observable property on the physical level, be it as an entry on a membership list (in

278 Florian Klein and Holger Giese

<<agent>> SRR <<communitys> <<agent>

51 : Shuttle ih\ﬂ;:lgwhel.gl_zﬁa ¢1 : TrafficControlrea [oe—"209°) e . BageStatian

{distance(s1.pesition, b1 postion) = bsi range}

<<agent>> edalotez> <<communitys> <<agent>>
9 shuitle area gs o
s1: Shuttle c1: TrafficControlArea 3 bs1: BaseStation

<<memberzhip>>

{distanceis1 postion, bs1.position) > bs1.range}

Fig. 5. Implicitly defined membership in a Traffic Control Area.

the form of a published message) or as a shuttle’s current position. This holds true for
all subsequently defined constructs: they are all associated with concrete, though pos-
sibly complex, observable patterns in the physical model. A community is therefore
associated with two story patterns describing the conditions for joining and leaving it.
Figure 5 provides the corresponding patterns for the physically localized traffic control
communities. In the diagrams, cultures, communities and agents are marked with cor-
responding UML stereotypes that serve as a compact notation for classifying objects
with respect to these conceptual categories. Likewise, membership, the special defin-
ing relationship that exists between a community and its agents, is qualified using a
stereotype.

A culture specifies the different roles that occur in a community, complete with
constraints that permit or require their adoption. A role in turn specifies a collection
of behaviors with rules for their invocation, expressed by story patterns. The behaviors
themselves are described using statecharts with real-time annotations.

Behaviors are closely linked to social conventions, which are an abstract but
nonetheless influential part of a culture definition. Social conventions describe the rules
that apply to a community. Normative rules usually prescribe a certain operative behav-
ior, e.g. which shuttle should have the right of way when they are on a collision course.
But in order to model more complex social interactions, it is also useful to have de-
scriptive social conventions that offer a definitive interpretation of an agent’s behavior.
In this context, a concept derived from speech act theory plays an important part: *Pro-
fessed intentions’ publicize an agent’s intentions and may be classified using speech
act classes such as assertion, permission, prohibition, directive or commitment [7]. A
professed intention can be issued explicitly, usually as a message that has been defined
by an interaction pattern or that conforms to a more generic shared communication lan-
guage, or implicitly, basically as an interpretation of certain acts that has been agreed
upon beforehand. Even though professed intentions are essentially abstract, they are al-
ways tied to an unambiguous manifestation in the physical model and can therefore be
modeled by story patterns. In the models we present, the manifestation of a professed
intention is marked with the respective stereotype. The actual content of the professed
intention is specified independently from the manifestation by means of a dedicated
object, which is associated with the originating agent using the intention stereotype.
The object contains a pattern that specifies e.g. what is asserted or promised. As pro-
fessed intentions can reference other professed intentions, these patterns can serve to
introduce complex behaviors into a system. E.g. once a commitment to complete a task
is fulfilled, the same pattern that assesses this might trigger a new commitment that
obliges the client to pay.

Separation of Concerns for Mechatronic Multi-agent Systems 279

entry.CoordinatesMessage

waiting send
/ directory.CoordinatesMessage waiting

(a) Entry Role (b) Directory Role

- . . -~
(Publication)
~ -

-~

=<

<<agent>> =t - = <<agent>>
s1:Shuttle | "V drectory T ps1 - BageStation
shuttle manager

area <<community>> area
<<membership>> | ¢1: TrafficControlArea | <<membership>>

(c) Pattern Definition

Fig. 6. Shuttle Information Publication Pattern.

3.3 Modeling Concerns

We will now present some detailed examples from our specification. Putting safety first,
we start out with the local traffic control communities responsible for avoiding colli-
sions. It is generally recommended to design the safety-critical concerns of a system
first and submit them to formal verification. They can then serve as a safe base for fur-
ther experiments concerning emergent behavior and advanced optimization strategies.

The rules for establishing the membership in a traffic control community have al-
ready been given in Figure 5. The second rule stipulates that upon joining the commu-
nity, a shuttle immediately start executing the publication pattern described in [8] and
illustrated by Figure 6(c): Every 20 time steps, each shuttle sends its position and ve-
locity to the respective base station (see Figure 6(a)), which receives (see Figure 6(b)
and publishes it, and reads the currently available information about the other shuttles.
Failures of any kind trigger an emergency stop. The actual collision avoidance pattern
is defined building on this infrastructure: Shuttles generally head towards their targets
at their desired cruising speed. On the station’s list, they check for shuttles whose time
to (potential) collision falls below a certain limit at the current velocities. Shuttles head-
ing toward them exert a repulsive force that grows as their tau, the distance remaining
over closing speed, decreases. The sum of all forces determines the new velocity and
thus initiates the necessary evasive action. Note that this includes the option to stop
altogether, the trivially safe choice.

This pattern only works for shuttles in the same traffic control community that can
perceive each other via its blackboard. The areas covered by different local communities
overlap in order to avoid collisions upon joining: the layout ensures that the agents are
already acquainted in at least one of the overlapping communities (see Figure 7).

We now turn to the actual purpose of the system, the completion of tasks. As this
concern is not in itself safety-critical, but requires a greater degree of flexibility due
to its complex and more abstract nature, we do not use statecharts, but story-pattern-
based rules to specify its behavioral patterns. A task starts an auction by publishing an
AdvertiseTask message, thus creating and joining a dedicated community (see Figure

280 Florian Klein and Holger Giese

A °
[} 1 ° o)
V D \4 AV & A
14 Q
Qo‘ ° ° QQ ° A
-] | Q
a A
V
A AA "y
A D >
> A “n
° I ° °

Fig. 7. Base stations with associated areas.

<<create>>
<<membership>>

<<assertion>>

msqg1 : AdvertiseTask

<<community>> sender

c1 : Auction

<<agent>>

t1: Task

auction task

Fig. 8. A task initiates an auction.

8). The culture of these auction communities governs all the economic aspects of the
system. The AdvertiseTask message contains the intended destination. As it publishes
information about the task’s internal state, it is an assertion.

If a shuttle is interested in the transportation task, it posts a PlaceBid message con-
taining a bid (expressed as energy, which is used as currency) and a proposed deadline
for the completion of the task to the auction community’s message list. This message
both implicitly establishes the shuttle’s membership in the task’s auction community
and represents a commitment to honor the offer it proposes. The actual intention it pro-
fesses is given by the story pattern in the WorkPlanCommitment: delivering the task to
its destination before the promised deadline (see Figure 9).

A task will keep accepting bids for its auction as long as there are containers left.
It constantly ranks all proposals according to its preferences with respect to a low price
or an early time of arrival. As a task needs a number of shuttles equal to the remaining
number of containers, it will always accept the top containers bidders. Thus, the pub-
lication of a RateBids message implies a concrete commitment to load a container into
any top ranked shuttle that presents itself at the task’s position (see Figure 10).

<<agent>> o i hip <eagent>> | <sorealess em1 : WorkPlanCommitment
m fask auclion| C1:AUCHON lauction bidder 31-5,|\1Uﬂ|e <sintention>> [oa? dearline]
=mel fask 11 : Task
kernel | ahe e
<<assertions> _ MReplyTo <<gommitment= <<zgEn>> payload
msqg1 : AdvertiseTask msg2 : PlaceBid 51 : Shuttle [
- destination : Vector - deadline : Time - position := msg1.destination

Fig. 9. A shuttle places a binding bid.

Separation of Concerns for Mechatronic Multi-agent Systems 281

<<commitment=> <<commiment=>

= cm1 : UseCommitment
msgl : PlaceBid [L™ | msq2 : RateBids

{msgZ rankimsg1) = t1.containers}

J{sandar J{ser\dar
<<ggents») <<agent>
<agent> e I t1:Task |payioad franspot| S1: Shuttle

51 : Shuttle t1:Task | =cintention=»

Fig. 10. A task ranks all incoming bids.

k : Kemel kernel task agent payluad Irangporl | <<agent=»
el zeintanfipn== <<creatoss
ntanfioey Tealer t1: Task 51 : Shuttle
cm1 : PaymentCommitment Tsander sender
{ktime = msg2 deadline} {s1.postion = msg1.destinaton} <<assartion=> inReplyTo <<gommitments>
> msgl : AdvertiseTask msge2 : PlaceBid
1 Task e tranzpart| 51 : Shuttle e _ deadline * Time
1. transfens1 msg2 bid) - bid : Integer

Fig. 11. Tasks commit to paying once a shuttle has kept its promise.

The act of loading a container into the shuttle entails another, rather important com-
mitment: that is, to unload the container and transfer the promised energy as soon as the
shuttle’s contractual obligations have been fulfilled (see Figure 11).

In this manner, the culture provides a fairly high-level description of the interac-
tions surrounding the assignment and execution of tasks that still offer precise operative
semantics.

The last culture we present pertains to companies. Shuttles may form companies by
posting DeclareAffiliation messages that assert their membership (see Figure 12).

Shuttles within the same company coordinate their behavior with respect to bidding
and strategic movements in a peer to peer fashion. One possible coordination behavior
open to a shuttle that is faced with a large, attractive task is asking for assistance by
issuing a directive. This ’orders’ any shuttle that cares to respond to it to a certain
destination (see Figure 13). If, however, a shuttle replies favorably to the directive, this
is once again a concrete commitment to fulfill a WorkPlanCommitment that needs to be
honored.

There finally is a culture used by the ad-hoc convoys created by shuttles from the
same company (as seen in Figure 7). Each convoy corresponds to a temporary commu-
nity. While member of a convoy, all shuttles repeatedly issue short-term commitments
to maintain a common velocity, which is what enables traveling in such close proximity
without triggering the collision avoidance pattern and prompting evasive action.

associate <<membership>> company
<<create>> ‘
<<agent>> sender <<assertion>> affiliation| <<community>>
s1: Shuttle msg1 : DeclareAffiliation c1: Company

Fig. 12. Membership in a Company.

282 Florian Klein and Holger Giese

cm1 : WorkPlanCommitment <<cammitment>> ; <<directie>>
—agas {k.me < meg2 deadline] msg2 : Granthssistance | "RePYT) msq1 : RequestAssistance

| sliSnutle o kemel™y - Kernel - deadiine : Time - destination : Veclor

positfion:=msg1

<<greale>> | <<inlenlion=> |sender sender

<<ggent>> payload Iransport <<ggent>> <<memberships> <<gommunily>> <<membership> <<ggent>>
1 : Task & 51 : Shuttle iate company| ¢l : Company |associale company) 52 Shuttle

Fig. 13. Shuttle promising assistance.

4 Composition of Concerns

In order to integrate the separate concerns into a coherent whole, they are combined
and reconciled locally in each agent. This step is not trivial, as the agents need to con-
form to the rules, requirements and constraints from each individual concern, without
the benefit of an unambiguous specification concerning the way each rule is to be ful-
filled or what the agents’ internal design should be like. The conceptual specification
merely implies certain very generic assumptions about the cognitive model of an agent.
The physical model serves as an ontology that is to be shared by all agents. A certain
amount of knowledge about the environment is indispensable for the evaluation of the
rules governing the interaction patterns and generating the messages they require. In
this context, the perspective on an agent’s cognition is purely external: Through social
conventions and behaviors, we define a model of what we suppose or require an agent
to know in a specific situation. For example, we require an agent to know about the
positions of all adjacent shuttles as published by the local community. This ’legal per-
spective’, which is inspired by the way human law contains provisions that apply if a
defendant "knew or had to know’ a fact, allows us to abstract from the agents’ internal
knowledge representation and even give a limited operational definition of such elusive
concepts such as “truthfulness’. As the analogy implies, this entails that a system either
has to respect the conventions by design or make provisions for handling violations. The
legal perspective also opens up a path to the simulation of incomplete designs: By non-
deterministically choosing between the behavioral options offered by the specification,
the behavior of agents whose logic has not been implemented yet can be approximated.

4.1 Safety-Critical Conflicts

The integration may consequently result in the most general possible agent specification
that conforms with the legal specification, even though designing more specific, elab-
orated agents is entirely acceptable. When dealing with the safety-critical concerns of
the system, a state-model needs to be constructed that does not violate any of the safety
properties required of the system. This often challenging and time-consuming manual
task might be facilitated or even eventually made unnecessary by automated construc-
tion methods and tools. An approach that allows the synthesis of composite behavioral
models out of non-orthogonal concerns without real-time constraints is presented in [9].
Extending this work with respect to the statecharts with real-time annotations used for
the specification of the design patterns seems like a viable option in this context.

Separation of Concerns for Mechatronic Multi-agent Systems 283

Once an integrated specification of the safety-critical real-time concerns of the sys-
tem has been created, its correctness with respect to the original concerns and the re-
quired safety properties can be formally verified. As we present compositional model
checking, the approach used to achieve this, in detail in a dedicated paper [8], we shall
only provide a brief summary in this context, though.

Design patterns [10] for component behavior define roles with well-defined required
real-time behavior and communication channels. Certain safety and liveness properties
that are supposed to hold for the mechatronic system in question are translated into tem-
poral logic and subsequently locally verified for the isolated design pattern by means
of a model checker. The design patterns are then composed in strict accordance with
a set of compositional rules that syntactically only permit consistent component struc-
tures. By locally checking the parallel composition of the required behaviors within
each component, conflicts resulting from the composition can easily be identified. In
this context, first results for the automatic resolution of such conflicts for the untimed
case have been developed [11]. At the cost of the restrictions introduced by the compo-
sitional rules, it is thus possible to avoid the state explosion problem and verify large
systems using only a limited number of efficient, localized checks.

In the current approach, agents concurrently participating in several communities
can be seen as analogous to components implementing several roles safely and con-
sistently and may thus be verified by means of compositional model checking. In our
example, we can verify the system’s safety concerning collisions using this method.

4.2 Commitment Conflicts

As the rule-based specification of the performance-related concerns of the system in-
volves more complex models and predetermines fewer behavioral details, automatic
synthesis of an agent’s behavioral model seems hardly possible in this context. As there
are, often intentionally, many different behaviors that respect the rules, and the con-
struction of an integrated behavioral model that reflects all those possibilities is gener-
ally not possible, we restrict ourselves to uncovering conflicts at the specification level
at this point. Actually designing the agents’ behavior is a manual process that requires
appropriate decisions by the developer at a later time.

When checking for conflicts between different commitments, we can employ ap-
proaches for the verification of graphical specifications based on graph grammars [12]
and their consistency [13]. We start by compiling the hierarchy of the different abstract
categories of commitments found in the shuttle system (see Figure 14(a)). We then fo-
cus on the commitments made by a particular agent type, say shuttles. We check for
the rule in Figure 14(b), i.e. whether a shuttle can issue two concurrent commitments.
As shuttles issue different types of commitments, this is certainly the case. Closer in-
spection does not necessarily indicate conflicts, though, as the level of abstraction is too
generic.

We therefore need to refine our analysis and specifically look at different types of
shuttle commitments. Figure 14(c) proposes the rule that a shuttle should not issue two
commitments concerning its work plan at the same time. As the deadlines are tightly
calculated, fulfilling both commitments will only be possible when their respective des-

284 Florian Klein and Holger Giese

AgentCommitment

N\

ShuttleCommitment TaskCommitment

| RoleCommitment | | WorkPlanCommitment | | UseCommitment || PaymentCommitment

(a) Commitment type hierarchy

<<commitment>> <<intention>> <<agent>> <<intention>> <<commitment>>
cm1 : ShuttleCommitment s1: Shuttle cm?2 : ShuttleCommitment

(b) ShuttleCommitment Conflict

<<commitment>> <<intention>> <<agent>> <<intention>>| <<commitment>>
cm1 : WorkPlanCommitment s1: Shuttle cm2 : WorkPlanCommitment

(¢) WorkPlanCommitment Conflict

Fig. 14. Analyzing commitments.

tinations chance to be in close proximity, i.e. the concurrent commitments generally
represent a genuine conflict and should indeed be prohibited.

Analysis reveals that the specification allows the concurrent posting of a PlaceBid
(see Figure 9) and a GrantAssistance (see Figure 13) message, which imply two con-
flicting WorkPlanCommitments. This conflict becomes possible because placing a bid
already constitutes a commitment, whereas the second pattern only checks whether the
shuttle is currently carrying a payload. This problem can easily be remedied by chang-
ing the rules so that a shuttle can only commit to a work plan if there is no preexisting
commitment to another active work plan.

The structured composition between the safety-critical and the performance-related
concerns ensures that the system’s safety properties are not invalidated by the behav-
iors stipulated by rules and commitments. The result of this step is therefore a safe
behavioral specification for the system’s agents, which can be independently verified
by re-running the model checker on the integrated model.

5 Rapid Prototyping

Now that we have modeled and integrated all relevant aspects of the agents’ behavioral
model, we can move on to the experimental evaluation of the system’s emergent behav-
ior. As the system’s safety properties have been formally verified, the focus here is its
efficiency. We first discuss issues related to the operationalization of the specification
and then use it to detect and resolve an emergent pathological behavior.

5.1 Operationalization

The legal perspective primarily provides an “interface specification’. With respect to an
agent’s cognition, it ultimately needs to be complemented by a more detailed design
dealing with encodings, knowledge representation or complex inference mechanisms.
For the rapid prototyping of the system’s design, i.e. the rules and control structures,

Separation of Concerns for Mechatronic Multi-agent Systems 285

this is neither practical nor actually desirable. A concrete implementation might intro-
duce implicit limiting assumptions not warranted by the specification, whereas nonde-
terministic choice ensures the consideration of all admissible behaviors. Nonetheless,
the agents’ internal cognitive structures and processes may be supplied and elaborated
in a process of stepwise refinement, which is useful for the validation of the completed
parts of an incomplete implementation.

At the level of detail that the specification of the legal perspective provides, it is thus
already possible to implement a prototype to experimentally test the design. Because of
our emphasis on the design principle that every concept needs to be grounded in the
physical domain model, the specification, including the declarative parts, has precise
operational semantics and can directly be turned into an executable model. As code
generation is available for both class diagrams and story patterns, this enables rapid
development cycles of experimental evaluation und subsequent refinement of the design
specification.

Fujaba® is an open source case tool that has been developed at the University of
Paderborn and is currently being extended in cooperation with several other univer-
sities. It is capable of generating complete executable programs from specifications
consisting of UML class diagrams, statecharts and story patterns. Currently, Java is the
only supported target platform, but efforts to extend the tool to C++ are under way. A
companion application to Fujaba is DOBS (Dynamic Object Browsing System), a visu-
alization tool that dynamically generates interactive object diagrams at run-time using
the Java reflection API. DOBS facilitates the visualization of structures and structural
changes and doubles as a graphical debugger. It was used successfully for the rapid pro-
totyping of production systems [14]. Using Fujaba, the specification outlined above can
be modeled and exported to Java source code. In conjunction with a pre-built generic
simulation framework that provides the domain independent aspects of the simulation,
such as a basic messaging framework, object management and a threading model, this
provides a basic simulation environment for control patterns in the RailCab domain.

5.2 Emergent Pathologies

We can now execute the specification we designed. The safety-critical concerns that
have been formally verified should behave as predicted. The emergent behaviors, how-
ever, might not materialize or turn out in unexpected and undesired ways. Assuming
that each concern is correctly implementing its own requirements, this is usually the
consequence of interference between two or more concerns.

There is no general recipe for resolving conflicts between concerns, as balancing
the different requirements usually depends on domain-specific knowledge. Consider the
case when an expected emergent behavior is modified or inhibited by a safety-critical
concern of the system. Even though safety clearly has the higher priority, only an in-
depth analysis of the conflict can ultimately resolve it: If the safety-critical part of the
system explicitly inhibits the desired behavior, the behavior is either inherently unsafe
and should be dropped, or the constraints of the safety-critical part are too restrictive
and should be relaxed. E.g. a rule forbidding shuttles to move would be quite safe, but

3 http://www.fujaba.de

286 Florian Klein and Holger Giese

AN ~ v
I >
Am A Vg Y A 4
(a) Livelock (b) Deadlock (c) Resolution

Fig. 15. Resolution of pathological behavior during task pick-up through priorities.

make the system completely ineffective. If, however, the inhibiting behavior is optional,
the affected concern should be augmented by valid refinements of the respective pattern
that avoid this behavior. We provide an example of this in the following.

The control mechanisms we designed in the previous section generally work as
intended. Most notably, they reliably avoid collisions. When introducing tasks requiring
a large number of shuttles, this in turn leads to a long list of accepted bidders which will
then simultaneously attempt to approach the task entity. Though collisions are avoided,
a pathological behavior ensues: due to the collision avoidance pattern, the interested
shuttles effectively keep each other from approaching the task and start — apparently
aimlessly — moving around it in pulsating circles (see Figure 15(a)), a classic case of
livelock. In a second pathological pattern, a single agent actually reaches the task and
picks up a container, but is then blocked from leaving by the approaching other shuttles
(see Figure 15(b)) in a deadlock situation.

By introducing a new behavioral pattern into the culture of the communities group-
ing the shuttles bidding for the same task, both problems can be remedied. According
to their rank on the list of accepted bidders published on the community’s blackboard,
shuttles are assigned a priority. When two shuttles approaching the same task interfere
with each other, the shuttle with the lower priority will exhibit a stronger evasive im-
pulse than required by the collision avoidance pattern, i.e. it will stop more quickly,
wait and even back away (see Figure 15(c)). The dominant shuttle is still bound by the
collision avoidance pattern, but will not have to perform significant evasive maneuvers
as the conflict is unilaterally resolved by the other shuttle. Conceptually, the new pattern
is thus layered on top of the existing collision avoidance pattern, effectively eclipsing it
but leaving it intact. As the new behavior it specifies is still entirely compatible with the
basic pattern, the safety guarantees made by the collision avoidance pattern still hold.

6 Related Work

The principle of separation of concerns [15] has recently drawn a lot of attention due to
advances like aspect-oriented programming (AOP) [16] or subject-oriented program-
ming (SOP) [17]. The general idea is to consider different aspects or views on the
system in isolation and only compose the overall system design or implementation at
the end of the process. Thus, it becomes possible to focus the development effort on
individual concerns and develop suitable local solutions, and at the same time facilitate
an understanding of the complete system. Cross-cutting concerns like persistence, log-
ging or error handling are frequently cited examples of aspects that are ideally suited
for such treatment. In contrast, the presented approach addresses overlapping functional
concerns and their systematic composition.

Separation of Concerns for Mechatronic Multi-agent Systems 287

Aspect composition is usually carried out at the source code level, whereas our
approach operates at the specification level. One notable exception is subject-oriented
design [18], which also is specification-based. The approach uses individual design
subjects to synthesize object-oriented design models, but is limited to concepts for the
composition of their structural features. Role-based modeling [19] is another related
approach that supports several dedicated views on a system or a component which are
subsequently combined. In addition, a tool for weaving aspects described by means of
UML role models with additional OCL constraints is sketched in [20]. It combines the
idea of aspects at the design level with role modeling. However, the proposed weav-
ing and superposition techniques only address the composition of structure and method
bodies, while the presented approach focuses on the behavioral composition of the re-
active behavior.

Current proposals for a separation of concerns for multi-agent systems [21] largely
focus on exploiting separation of concerns within the individual agents to ease their
implementation. The presented approach is different in using social interaction rules
(cultures) and their structuring (communities) to separate different aspects of the overall
design of a multi-agent system.

With respect to our approach to social structure in multi-agent systems, we see
strong parallels to the current work on organization centered multi-agent systems (OC-
MAS) based on the agent, group, role (AGR) model [22]. Common points include the
predominance of inter-agent aspects and the abstraction from agents’ cognitive abilities.
However, we apply dynamic, intersecting groups as a more general, implementation-
agnostic modeling concept.

Rapid prototyping is a method in wide-spread use in many different areas. In the
specific context of mechatronic systems, it is often concerned with the design and
incremental improvement of control laws (cf. [23]). For this purpose, it is combined
with virtual prototyping (cf. [24]) or, more frequently, dedicated prototyping hardware
(e.g. FPGAs) that allows a quick implementation and reconfiguration. Here, the control
structures and dataflow are usually rather static, however. Software engineering, espe-
cially with proper CASE tool support, lends itself to rapid prototyping (cf. [3]). While
it is generally seen as a useful method for early validation, as recently popularized by
approaches like the test-driven Extreme Programming [25], it is frequently not com-
bined with a formal process. Where applied systematically, it is often primarily seen
as a tool for requirements engineering [26]. It has also been advocated that prototyp-
ing is an appropriate approach to support aspect composition (cf. [27]). In contrast,
the presented approach uses model-based prototyping to identify potential interactions
between agents that need to be coordinated and to explore and refine emergent be-
havior, while conformance of multiple composed concerns within each single agent is
addressed by formal verification techniques.

7 Conclusion and Future Work

We have presented an approach for the design of mechatronic multi-agent systems
which addresses the demand for the integration of partially predictable and partially
emergent behavior. We address the complexity problem by decomposing the system

288 Florian Klein and Holger Giese

into concerns that, to a great extent, allow the requirements and design to be studied
independently. The concerns are realized using social structures (communities) with
behavioral and communicative norms (cultures). The concluding composition of the
concerns is effected in a manner that preserves all required analytic properties but lets
complex emergent behavior further refine them. Conflicts are systematically identified
and resolved at different levels: safety properties and the consistency of commitments
are verified locally for individual agents, whereas emergent pathologies are identified
experimentally using rapid prototyping. The explicit grounding of all abstract concepts,
using the environment model of the mechatronic system under development, results in
the ability to formally reason about required properties and still retain the operational
semantics needed for a rapid prototyping approach to the evaluation of expected emer-
gent properties.

We plan to evaluate the proposed concepts by means of a rapid simulation and
prototyping extension for the Fujaba CASE tool and a series of alternative designs for
large-scale scenarios of the RailCab case study. In its presented form, the approach
exploits some domain specific characteristics of mechatronic systems. We also plan,
however, to extend the approach to purely virtual systems as well, even though clearly
none of their elements are physical. Those elements of the system that possess very
immediate semantics and are directly accessible may be interpreted as a “physical”
domain model. Due to the proposed grounding, the approach offers a solid unambiguous
base for formalizing the semantics of the more abstract concepts, and we believe that it
can be employed with all the advantages it offers for mechatronic systems.

References

1. Dawson, D., D. Seward, D.B., Burge, S.: Mechatronics and the Design of Intelligent Ma-
chines and Systems. Nelson Thornes (2000)

2. Kennedy, J., Eberhardt, R.C.: Swarm Intelligence. Morgan Kaufmann publishers Inc.: San
Mateo, CA, USA (2001)

3. Mullin, M.: Rapid prototyping for object oriented systems. Addison-Wesley, Reading (1990)

4. Brooks, R.A.: Intelligence Without Reason. In Myopoulos, J., Reiter, R., eds.: Proceed-
ings of the 12th International Joint Conference on Artificial Intelligence (IJCAI-91), Sydney,
Australia, Morgan Kaufmann publishers Inc.: San Mateo, CA, USA (1991) 569-595

5. Fischer, T., Niere, J., Torunski, L., Ziindorf, A.: Story Diagrams: A new Graph Rewrite
Language based on the Unified Modeling Language. In Engels, G., Rozenberg, G., eds.:
tagt6. LNCS 1764, Springer (1998)

6. Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by Graph Transforma-
tion : Foundations. World Scientific Pub Co (1997) Volume 1.

7. Singh, M.P.: On Competitive On-Line Algorithms for the Dynamic Priority-Ordering Prob-
lem. IEEE Computer 31 (1998) 4047

8. Giese, H., Tichy, M., Burmester, S., Schafer, W., Flake, S.: Towards the compositional verifi-
cation of real-time uml designs. In: Proc. of the European Software Engineering Conference
(ESEC), Helsinki, Finland, ACM Press (2003)

9. Giese, H., Vilbig, A.: Separation of Non-Orthogonal Concerns in Software Architecture and
Design. Technical Report tr-ri-03-238, University of Paderborn, Paderborn, Germany (2003)

10. Giese, H., Burmester, S., Klein, F., Schilling, D., Tichy, M.: Multi-Agent System Design for

Safety-Critical Self-Optimizing Mechatronic Systems with UML. In: OOPSLA 2003 - 2nd
International Workshop on Agent-Oriented Methodologies, Anaheim, CA, USA. (2003)

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Separation of Concerns for Mechatronic Multi-agent Systems 289

Giese, H., Vilbig, A.: Separation of Non-Orthogonal Concerns in Software Architecture and
Design. Software and System Modeling (SoSyM) (2005) (accepted).

Varré, D.: Automated formal verification of visual modeling languages by model checking.
Journal of Software and Systems Modelling (2003) Accepted to the Special Issue on Graph
Transformation and Visual Modelling Techniques.

R.Heckel, J.Kiister, G.Taentzer: Towards automatic translation of UML models into seman-
tic domains. In: Proceedings of the Applied Graph Transformation (AGT2002) Workshop.
(2002) 11 -22

Kohler, H., Nickel, U., Niere, J., Ziindorf, A.: Integrating UML Diagrams for Production
Control Systems. In: Proc. of the 22" International Conference on Software Engineering
(ICSE), Limerick, Irland, ACM Press (2000) 241-251

Dijkstra, E.-W.: A Discipline of Programming. Prentice Hall, Englewood Cliffs, N.J. (1976)
Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M., Irwin,
J.: Aspect-Oriented Programming. In: Proceedings of the European Conference on Object-
Oriented Programming (ECOOP). Number 1241 in LNCS, Springer Verlag (1997)
Harrison, W., Ossher, H.: Subject-oriented programming (a critique of pure objects). In:
OOPSLA’93. Volume 28 of ACM SIGPLAN Notices. (1993) 411428

Clarke, S., Harrison, W., Ossher, H., Tarr, P.: Subject-Oriented Design: Towards Improved
Alignment of Requirements, Design and Code. In: Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, November 1-5, 1999, Denver, Colerado, USA.
(1999) 325-339

Reenskaug, T., Wold, P., Lehene, O.A.: Working with Objects: The OOram Software Engi-
neering Method. Addison-Wesley/Manning (1996)

Mekerke, F., Georg, G., Franc, R.: Tool Support for Aspect-Oriented Design. In: Proceed-
ings of the Workshops on Advances in Object-Oriented Information Systems (OOIS 2002),
Montpellier, France. Volume 2426 of Lecture Notes in Computer Science., Springer Verlag
(2002) 280 — 289

Garcia, A., Silva, V., Chavez, C., Lucena, C.: Engineering multi-agent systems with aspects
and patterns. J. Braz. Comp. Soc. 8 (2002) 57-72

Ferber, J., Gutknecht, O., Michel, F.: From Agents to Organizations: An Organizational
View of Multi-agent Systems. In: Agent-Oriented Software Engineering IV, 4th International
Workshop, AOSE 2003, Melbourne, Australia, July 15, 2003, Revised Papers. Volume 2935
of Lecture Notes in Computer Science., Springer Verlag (2003) 214-230

Deppe, M., Robrecht, M., Zanella, M., Hardt, W.: Rapid prototyping of real-time control
laws for complex mechatronic systems. In: Proc. of the 12th IEEE International Workshop
on Rapid System Prototyping (RSP 2001), 25-27 June 2001, Monterey, CA, USA, IEEE
Computer Society (2001) 188-193

Schupp, G., Jaschinksi, A.: Virtual prototyping: the future way of designing railway vehicles.
International Journal of Vehicle Design 22 (1999) 93-115

Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley Profes-
sional, Reading (1999)

Connell, J., Shafer, L.: Object-Oriented Rapid Prototyping. Yourdon Press, Englewood
Cliffs, NJ (1995)

Popovici, A., Gross, T., Alonso, G.: Dynamic weaving for aspect-oriented programming. In:
Proceedings of the 1st international conference on Aspect-oriented software development,
ACM Press (2002) 141-147

Agha, Gul 236
Ahmed, Amr 236
Alencar, Paulo 52

Bartolini, Claudio 213
Bastos, Licia R.D. 85
Bastos, Ricardo Melo 19
Blois Ribeiro, Marcelo 19

Castro, Jaelson FB. 85
Choren, Ricardo 198
Cossentino, Massimo 36

de Barros Costa, Evandro 162
Dias da Silva, Leandro 162
Do, T. Tung 70

Faulkner, Stéphane 70

Garcia, Alessandro 52, 121
Giese, Holger 272

Hameurlain, Nabil 180
Henderson-Sellers, Brian 1
Holvoet, Tom 104

Author Index

Jang, Myeong-Wuk 236
Jennings, Nicholas R. 213
Julien, Christine 254

Klein, Florian 272

Kolp, Manuel 70

Kulesza, Uira 52, 121
Lucena, Carlos 52, 121, 198
Oliveira de Almeida, Hyggo 162
Payton, Jamie 254
Perkusich, Angelo 162
Preist, Chris 213

Roman, Gruia-Catalin 254

Seidita, Valeria 36

Shan, Lijun 144
Sibertin-Blanc, Christophe 180
Steegmans, Elke 104

Weyns, Danny 104

Zhu, Hong 144

	Frontmatter
	Agent Methodologies and Processes
	From Object-Oriented to Agent-Oriented Software Engineering Methodologies
	MASUP: An Agent-Oriented Modeling Process for Information Systems
	Composition of a New Process to Meet Agile Needs Using Method Engineering
	A Generative Approach for Multi-agent System Development

	Requirements Engineering and Software Architectures
	A Social-Driven Design of e-Business System
	Systematic Integration Between Requirements and Architecture
	Integrating Free-Flow Architectures with Role Models Based on Statecharts
	Aspectizing Multi-agent Systems: From Architecture to Implementation

	Modeling Languages
	CAMLE: A Caste-Centric Agent-Oriented Modelling Language and Environment
	A Formal Approach for the Modelling and Verification of Multiagent Plans Based on Model Checking and Petri Nets
	Specification of Role-Based Interactions Components in Multi-agent Systems
	The ANote Modeling Language for Agent-Oriented Specification

	Dependability and Coordination
	A Software Framework for Automated Negotiation
	Efficient Agent Communication in Multi-agent Systems
	Adaptive Access Control in Coordination-Based Mobile Agent Systems
	Separation of Concerns for Mechatronic Multi-agent Systems Through Dynamic Communities

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

